These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26644780)

  • 1. In-Source Decay Characterization of Isoaspartate and β-Peptides.
    Yu X; Sargaeva NP; Thompson CJ; Costello CE; Lin C
    Int J Mass Spectrom; 2015 Nov; 390():101-109. PubMed ID: 26644780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiating N-terminal aspartic and isoaspartic acid residues in peptides.
    Sargaeva NP; Lin C; O'Connor PB
    Anal Chem; 2011 Sep; 83(17):6675-82. PubMed ID: 21736361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unequivocal Identification of Aspartic Acid and
    Hui JO; Flick T; Loo JA; Campuzano IDG
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):1901-1909. PubMed ID: 33390012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.
    Lehmann WD; Schlosser A; Erben G; Pipkorn R; Bossemeyer D; Kinzel V
    Protein Sci; 2000 Nov; 9(11):2260-8. PubMed ID: 11152137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-source decay during matrix-assisted laser desorption/ionization combined with the collisional process in an FTICR mass spectrometer.
    Asakawa D; Calligaris D; Zimmerman TA; De Pauw E
    Anal Chem; 2013 Aug; 85(16):7809-17. PubMed ID: 23879863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of isoaspartic Acid by selective proteolysis with Asp-N and electron transfer dissociation mass spectrometry.
    Ni W; Dai S; Karger BL; Zhou ZS
    Anal Chem; 2010 Sep; 82(17):7485-91. PubMed ID: 20712325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
    Güttler BH; Cynis H; Seifert F; Ludwig HH; Porzel A; Schilling S
    Amino Acids; 2013 Apr; 44(4):1205-14. PubMed ID: 23344882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine deamidation: differentiation of glutamic acid and gamma-glutamic acid in peptides by electron capture dissociation.
    Li X; Lin C; O'Connor PB
    Anal Chem; 2010 May; 82(9):3606-15. PubMed ID: 20373761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top-down study of β2-microglobulin deamidation.
    Li X; Yu X; Costello CE; Lin C; O'Connor PB
    Anal Chem; 2012 Jul; 84(14):6150-7. PubMed ID: 22746280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein isoaspartate methyltransferase-mediated 18O-labeling of isoaspartic acid for mass spectrometry analysis.
    Liu M; Cheetham J; Cauchon N; Ostovic J; Ni W; Ren D; Zhou ZS
    Anal Chem; 2012 Jan; 84(2):1056-62. PubMed ID: 22132761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoaspartate residues dramatically influence substrate recognition and turnover by proteases.
    Böhme L; Bär JW; Hoffmann T; Manhart S; Ludwig HH; Rosche F; Demuth HU
    Biol Chem; 2008 Aug; 389(8):1043-53. PubMed ID: 18979629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and quantitation of tetrapeptide deamidation products by mass spectrometry.
    Stevenson CL; Williams TD; Anderegg RJ; Borchardt RT
    J Pharm Biomed Anal; 1992 Aug; 10(8):567-75. PubMed ID: 1463791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual fragmentation of β-linked peptides by ExD tandem mass spectrometry.
    Sargaeva NP; Lin C; O'Connor PB
    J Am Soc Mass Spectrom; 2011 Mar; 22(3):480-91. PubMed ID: 21472566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of asparagine deamidation in a SOD1-based biosynthetic human insulin precursor by MALDI-TOF mass spectrometry.
    Bierczyńska-Krzysik A; Łopaciuk M; Pawlak-Morka R; Stadnik D
    Acta Biochim Pol; 2014; 61(2):349-57. PubMed ID: 24936522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.
    Asakawa D; Smargiasso N; Quinton L; De Pauw E
    J Mass Spectrom; 2013 Mar; 48(3):352-60. PubMed ID: 23494792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides.
    McMillen CL; Wright PM; Cassady CJ
    J Am Soc Mass Spectrom; 2016 May; 27(5):847-55. PubMed ID: 26864792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.
    Takayama M
    Mass Spectrom (Tokyo); 2012; 1(2):A0007. PubMed ID: 24349908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fluorescence-Based High-Throughput Coupled Enzymatic Assay for Quantitation of Isoaspartate in Proteins and Peptides.
    Puri A; Quan Y; Narang AS; Adams M; Gandhi R; Nashine VC
    AAPS PharmSciTech; 2017 Apr; 18(3):803-808. PubMed ID: 27342117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential beta-secretases.
    Böhme L; Hoffmann T; Manhart S; Wolf R; Demuth HU
    Biol Chem; 2008 Aug; 389(8):1055-66. PubMed ID: 18979630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approach for pseudo-MS(3) analysis of peptides and proteins via MALDI in-source decay using radical recombination with 1,5-diaminonaphthalene.
    Asakawa D; Smargiasso N; De Pauw E
    Anal Chem; 2014 Mar; 86(5):2451-7. PubMed ID: 24512348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.