These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26645347)

  • 1. Stimuli-responsive nanoparticles from ionic cellulose derivatives.
    Wang Y; Heinze T; Zhang K
    Nanoscale; 2016 Jan; 8(1):648-57. PubMed ID: 26645347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release.
    Peng X; Liu P; Pang B; Yao Y; Wang J; Zhang K
    Carbohydr Polym; 2019 Jul; 216():113-118. PubMed ID: 31047047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of physicochemical properties in the nanoprecipitation of cellulose acetate.
    Ghasemi SM; Alavifar SS
    Carbohydr Polym; 2020 Feb; 230():115628. PubMed ID: 31887871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood-Derived Polymers from Olefin-Functionalized Lignin and Ethyl Cellulose via Thiol-Ene Click Chemistry.
    An R; Liu C; Wang J; Jia P
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Fatty Acid Modification of Cellulose in a CO
    Esen E; Hädinger P; Meier MAR
    Biomacromolecules; 2021 Feb; 22(2):586-593. PubMed ID: 33289549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic-liquid-based method to determine the degree of esterification in cellulose fibers.
    Domínguez de María P; Martinsson A
    Analyst; 2009 Mar; 134(3):493-6. PubMed ID: 19238285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters.
    Hornig S; Heinze T
    Biomacromolecules; 2008 May; 9(5):1487-92. PubMed ID: 18393524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery.
    Kong M; Peng X; Cui H; Liu P; Pang B; Zhang K
    RSC Adv; 2020 Jan; 10(9):4860-4868. PubMed ID: 35498333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric assemblies and nanoparticles with stimuli-responsive fluorescence emission characteristics.
    Li C; Liu S
    Chem Commun (Camb); 2012 Apr; 48(27):3262-78. PubMed ID: 22367463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Synthesis of Quadrilateral-Shaped Silver Nanoplates with Lamellar Structures Tuned by Amylopectin Derivatives.
    Pang B; Köhler R; Roddatis V; Liu H; Wang X; Viöl W; Zhang K
    ACS Omega; 2018 Jun; 3(6):6841-6848. PubMed ID: 31458853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media.
    Sui X; Yuan J; Zhou M; Zhang J; Yang H; Yuan W; Wei Y; Pan C
    Biomacromolecules; 2008 Oct; 9(10):2615-20. PubMed ID: 18774859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylated cellulose derivatives with regioselective distributions of pendant glucose moieties.
    Wang S; Zhang K
    Carbohydr Polym; 2018 Sep; 196():154-161. PubMed ID: 29891282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth.
    Mochochoko T; Oluwafemi OS; Jumbam DN; Songca SP
    Carbohydr Polym; 2013 Oct; 98(1):290-4. PubMed ID: 23987347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures.
    Hu X; Liu S
    Dalton Trans; 2015 Mar; 44(9):3904-22. PubMed ID: 25579704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoresponsive cellulose fibers by surface modification with multifunctional cellulose derivatives.
    Grigoray O; Wondraczek H; Heikkilä E; Fardim P; Heinze T
    Carbohydr Polym; 2014 Oct; 111():280-7. PubMed ID: 25037353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.
    Lee Y; Hanif S; Theato P; Zentel R; Lim J; Char K
    Macromol Rapid Commun; 2015 Jun; 36(11):1089-95. PubMed ID: 25761204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic activities of cellulose-based nanofibers with different silver phases: silver ions and nanoparticles.
    Jang KH; Kang YO; Lee TS; Park WH
    Carbohydr Polym; 2014 Feb; 102():956-61. PubMed ID: 24507369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.
    Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q
    Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions.
    Zhang K; Geissler A; Standhardt M; Mehlhase S; Gallei M; Chen L; Marie Thiele C
    Sci Rep; 2015 Jun; 5():11011. PubMed ID: 26051984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of arsenic(III) through pulsed laser-induced desorption/ionization of gold nanoparticles on cellulose membranes.
    Weng CI; Cang JS; Chang JY; Hsiung TM; Unnikrishnan B; Hung YL; Tseng YT; Li YJ; Shen YW; Huang CC
    Anal Chem; 2014 Mar; 86(6):3167-73. PubMed ID: 24552451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.