BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26645678)

  • 1. Surface Interrogation Scanning Electrochemical Microscopy of Ni(1-x)Fe(x)OOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the "fast" Iron Sites.
    Ahn HS; Bard AJ
    J Am Chem Soc; 2016 Jan; 138(1):313-8. PubMed ID: 26645678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.
    Trotochaud L; Young SL; Ranney JK; Boettcher SW
    J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.
    Friebel D; Louie MW; Bajdich M; Sanwald KE; Cai Y; Wise AM; Cheng MJ; Sokaras D; Weng TC; Alonso-Mori R; Davis RC; Bargar JR; Nørskov JK; Nilsson A; Bell AT
    J Am Chem Soc; 2015 Jan; 137(3):1305-13. PubMed ID: 25562406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.
    Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P
    J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.
    Burke MS; Kast MG; Trotochaud L; Smith AM; Boettcher SW
    J Am Chem Soc; 2015 Mar; 137(10):3638-48. PubMed ID: 25700234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction.
    Xiao H; Shin H; Goddard WA
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5872-5877. PubMed ID: 29784794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.
    Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P
    J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity.
    Trześniewski BJ; Diaz-Morales O; Vermaas DA; Longo A; Bras W; Koper MT; Smith WA
    J Am Chem Soc; 2015 Dec; 137(48):15112-21. PubMed ID: 26544169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Reconstructed Zn doped Fe
    Zhang X; Yi H; Jin M; Lian Q; Huang Y; Ai Z; Huang R; Zuo Z; Tang C; Amini A; Jia F; Song S; Cheng C
    Small; 2022 Sep; 18(37):e2203710. PubMed ID: 35961949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide.
    Lee S; Bai L; Hu X
    Angew Chem Int Ed Engl; 2020 May; 59(21):8072-8077. PubMed ID: 32078226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.
    Bau JA; Luber EJ; Buriak JM
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19755-63. PubMed ID: 26293239
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhang Z; Feng C; Li X; Liu C; Wang D; Si R; Yang J; Zhou S; Zeng J
    Nano Lett; 2021 Jun; 21(11):4795-4801. PubMed ID: 34018755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strongly facet-dependent activity of iron-doped β-nickel oxyhydroxide for the oxygen evolution reaction.
    Govind Rajan A; Martirez JMP; Carter EA
    Phys Chem Chem Phys; 2024 May; 26(20):14721-14733. PubMed ID: 38716632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry.
    Goldsmith ZK; Harshan AK; Gerken JB; Vörös M; Galli G; Stahl SS; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3050-3055. PubMed ID: 28265083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace Fe Incorporation into Ni-(oxy)hydroxide Stabilizes Ni
    Wu Y; Zhao MJ; Li F; Xie J; Li Y; He JB
    Langmuir; 2020 May; 36(19):5126-5133. PubMed ID: 32336103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated FeS
    Zhang L; Rong J; Yang Y; Zhu H; Yu X; Chen C; Cheng HM; Liu G
    Small; 2023 Apr; 19(17):e2207472. PubMed ID: 36737810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts.
    Francàs L; Corby S; Selim S; Lee D; Mesa CA; Godin R; Pastor E; Stephens IEL; Choi KS; Durrant JR
    Nat Commun; 2019 Nov; 10(1):5208. PubMed ID: 31729380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.