These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26646299)

  • 1. Fully Automated Driving: Impact of Trust and Practice on Manual Control Recovery.
    Payre W; Cestac J; Delhomme P
    Hum Factors; 2016 Mar; 58(2):229-41. PubMed ID: 26646299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving.
    Hergeth S; Lorenz L; Vilimek R; Krems JF
    Hum Factors; 2016 May; 58(3):509-19. PubMed ID: 26843570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceived safety and trust in SAE Level 2 partially automated cars: Results from an online questionnaire.
    Nordhoff S; Stapel J; He X; Gentner A; Happee R
    PLoS One; 2021; 16(12):e0260953. PubMed ID: 34932565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver-initiated take-overs during critical braking maneuvers in automated driving - The role of time headway, traction usage, and trust in automation.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2022 Sep; 174():106725. PubMed ID: 35878555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing Drivers' Trust of Automated Vehicle Driving Styles With a Two-Part Mixed Model of Intervention Tendency and Magnitude.
    Lee JD; Liu SY; Domeyer J; DinparastDjadid A
    Hum Factors; 2021 Mar; 63(2):197-209. PubMed ID: 31596618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction matters: Manipulating trust in automation and reliance in automated driving.
    Körber M; Baseler E; Bengler K
    Appl Ergon; 2018 Jan; 66():18-31. PubMed ID: 28958427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prior Familiarization With Takeover Requests Affects Drivers' Takeover Performance and Automation Trust.
    Hergeth S; Lorenz L; Krems JF
    Hum Factors; 2017 May; 59(3):457-470. PubMed ID: 27923886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Computational Simulations of Behavior During Automated Driving Takeovers: A Review of the Empirical and Modeling Literatures.
    McDonald AD; Alambeigi H; Engström J; Markkula G; Vogelpohl T; Dunne J; Yuma N
    Hum Factors; 2019 Jun; 61(4):642-688. PubMed ID: 30830804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moving Into the Loop: An Investigation of Drivers' Steering Behavior in Highly Automated Vehicles.
    Alsaid A; Lee JD; Price M
    Hum Factors; 2020 Jun; 62(4):671-683. PubMed ID: 31180728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asleep at the automated wheel-Sleepiness and fatigue during highly automated driving.
    Vogelpohl T; Kühn M; Hummel T; Vollrath M
    Accid Anal Prev; 2019 May; 126():70-84. PubMed ID: 29571975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trust and Distrust of Automated Parking in a Tesla Model X.
    Tenhundfeld NL; de Visser EJ; Ries AJ; Finomore VS; Tossell CC
    Hum Factors; 2020 Mar; 62(2):194-210. PubMed ID: 31419163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is partially automated driving a bad idea? Observations from an on-road study.
    Banks VA; Eriksson A; O'Donoghue J; Stanton NA
    Appl Ergon; 2018 Apr; 68():138-145. PubMed ID: 29409628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automation transparency: implications of uncertainty communication for human-automation interaction and interfaces.
    Kunze A; Summerskill SJ; Marshall R; Filtness AJ
    Ergonomics; 2019 Mar; 62(3):345-360. PubMed ID: 30501566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Public Acceptance of Fully Automated Driving: Effects of Social Trust and Risk/Benefit Perceptions.
    Liu P; Yang R; Xu Z
    Risk Anal; 2019 Feb; 39(2):326-341. PubMed ID: 30059602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral Adaptations to Lane Keeping Systems: Effects of Exposure and Withdrawal.
    Miller EE; Boyle LN
    Hum Factors; 2019 Feb; 61(1):152-164. PubMed ID: 30235014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control task substitution in semiautomated driving: does it matter what aspects are automated?
    Carsten O; Lai FC; Barnard Y; Jamson AH; Merat N
    Hum Factors; 2012 Oct; 54(5):747-61. PubMed ID: 23156620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driving Performance After Self-Regulated Control Transitions in Highly Automated Vehicles.
    Eriksson A; Stanton NA
    Hum Factors; 2017 Dec; 59(8):1233-1248. PubMed ID: 28902526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Takeover Time in Highly Automated Vehicles: Noncritical Transitions to and From Manual Control.
    Eriksson A; Stanton NA
    Hum Factors; 2017 Jun; 59(4):689-705. PubMed ID: 28124573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.