These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26646302)
1. Sensitive and selective turn-on fluorescence method for cetyltrimethylammonium bromide determination based on acridine orange-polystyrene sulfonate complex. Li N; Hao X; Kang BH; Li NB; Luo HQ Luminescence; 2016 Jun; 31(4):1025-30. PubMed ID: 26646302 [TBL] [Abstract][Full Text] [Related]
2. A simple and sensitive turn-on fluorescence probe for detection of cetyltrimethylammonium bromide in aqueous samples. Tai D; Liu J Luminescence; 2015 May; 30(3):358-61. PubMed ID: 25044401 [TBL] [Abstract][Full Text] [Related]
3. Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system. Wang F; Yang J; Wu X; Wang X; Feng L; Jia Z; Guo C J Colloid Interface Sci; 2006 Jun; 298(2):757-64. PubMed ID: 16458913 [TBL] [Abstract][Full Text] [Related]
4. Formation and dissociation of the acridine orange dimer as a tool for studying polyelectrolyte-surfactant interactions. Mondek J; Mravec F; Halasová T; Hnyluchová Z; Pekař M Langmuir; 2014 Jul; 30(29):8726-34. PubMed ID: 25001412 [TBL] [Abstract][Full Text] [Related]
5. Enhanced reduction and determination of trace thyroxine at carbon paste electrode in the presence of trace cetyltrimethylammonium bromide. Hu C; He Q; Li Q; Hu S Anal Sci; 2004 Jul; 20(7):1049-54. PubMed ID: 15293400 [TBL] [Abstract][Full Text] [Related]
6. Cu2+-induced micellar charge selective fluorescence response of acridine orange: effect of micellar charge, pH, and mechanism. Ghosh AK; Samanta A; Bandyopadhyay P J Phys Chem B; 2011 Oct; 115(41):11823-30. PubMed ID: 21905674 [TBL] [Abstract][Full Text] [Related]
7. Spectrophotometric, spectrofluorimetric, and potentiometric assays of cetyltrimethylammonium bromide in industrial wastewater samples. Hussein LA; Fares NV; El-Kosasy AM J AOAC Int; 2014; 97(4):1175-82. PubMed ID: 25145154 [TBL] [Abstract][Full Text] [Related]
8. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin. Kaewsuya P; Miller JD; Danielson ND; Sanjeevi J; James PF Anal Chim Acta; 2008 Sep; 626(2):111-8. PubMed ID: 18790112 [TBL] [Abstract][Full Text] [Related]
9. Detoxification of gold nanorods by treatment with polystyrenesulfonate. Leonov AP; Zheng J; Clogston JD; Stern ST; Patri AK; Wei A ACS Nano; 2008 Dec; 2(12):2481-8. PubMed ID: 19206282 [TBL] [Abstract][Full Text] [Related]
10. [Fluorescence resonance energy transfer quenching method for determination of arsenic with acridine orange-rhodamine B]. Liu BS; Gao J; Liu ZC; Yu LN; Yang DC; Yang GL Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):306-8. PubMed ID: 16826913 [TBL] [Abstract][Full Text] [Related]
11. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles. Wang F; Huang W; Zhang S; Liu G; Li K; Tang B Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1013-7. PubMed ID: 21239219 [TBL] [Abstract][Full Text] [Related]
12. "Turn off-on" phosphorescent biosensors for detection of DNA based on quantum dots/acridine orange. Miao Y; Li Y; Zhang Z; Yan G; Bi Y Anal Biochem; 2015 Apr; 475():32-9. PubMed ID: 25637306 [TBL] [Abstract][Full Text] [Related]
13. [Determination of vitamin B12 concentration by fluorescence quenching with acridine orange-rhodamine 6G energy transfer system]. Liu BS; Gao J; Yang GL Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1080-2. PubMed ID: 16241060 [TBL] [Abstract][Full Text] [Related]
14. An erythrosin B-based "turn on" fluorescent sensor for detecting perfluorooctane sulfonate and perfluorooctanoic acid in environmental water samples. Cheng Z; Du L; Zhu P; Chen Q; Tan K Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():281-287. PubMed ID: 29758514 [TBL] [Abstract][Full Text] [Related]
15. A novel fluorescence probing strategy for the determination of parathion-methyl. Yan X; Li H; Wang X; Su X Talanta; 2015 Jan; 131():88-94. PubMed ID: 25281077 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of Coomassie Brilliant Blue G-250 binding to cetyltrimethylammonium bromide: an interference with the Bradford assay. Aminian M; Nabatchian F; Vaisi-Raygani A; Torabi M Anal Biochem; 2013 Mar; 434(2):287-91. PubMed ID: 23219565 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resonance energy transfer between acridine orange and rhodamine 6G and its analytical application for vitamin B12 with flow-injection laser-induced fluorescence detection. Xu H; Li Y; Liu C; Wu Q; Zhao Y; Lu L; Tang H Talanta; 2008 Oct; 77(1):176-81. PubMed ID: 18804617 [TBL] [Abstract][Full Text] [Related]
18. [Catalysis-fluorescence determination of trace nitrite based on the oxidation of acridine orange by potassium bromate]. Bao SY; Liu WJ; Hu HF Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Mar; 24(3):342-4. PubMed ID: 15759994 [TBL] [Abstract][Full Text] [Related]
19. The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle. Wang F; Wu X; Wang F; Liu S; Jia Z; Yang J J Fluoresc; 2006 Jan; 16(1):53-9. PubMed ID: 16432763 [TBL] [Abstract][Full Text] [Related]
20. Resonance light scattering method for the determination of anionic surfactant with acridine orange. Xiao X; Wang Y; Chen Z; Li Q; Liu Z; Li G; Lü C; Xue J; Li Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):398-402. PubMed ID: 18280203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]