These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma. Ho TH; Park IY; Zhao H; Tong P; Champion MD; Yan H; Monzon FA; Hoang A; Tamboli P; Parker AS; Joseph RW; Qiao W; Dykema K; Tannir NM; Castle EP; Nunez-Nateras R; Teh BT; Wang J; Walker CL; Hung MC; Jonasch E Oncogene; 2016 Mar; 35(12):1565-74. PubMed ID: 26073078 [TBL] [Abstract][Full Text] [Related]
4. Chiang YC; Park IY; Terzo EA; Tripathi DN; Mason FM; Fahey CC; Karki M; Shuster CB; Sohn BH; Chowdhury P; Powell RT; Ohi R; Tsai YS; de Cubas AA; Khan A; Davis IJ; Strahl BD; Parker JS; Dere R; Walker CL; Rathmell WK Cancer Res; 2018 Jun; 78(12):3135-3146. PubMed ID: 29724720 [TBL] [Abstract][Full Text] [Related]
5. Loss of SETD2, but not H3K36me3, correlates with aggressive clinicopathological features of clear cell renal cell carcinoma patients. Liu L; Guo R; Zhang X; Liang Y; Kong F; Wang J; Xu Z Biosci Trends; 2017 May; 11(2):214-220. PubMed ID: 28260718 [TBL] [Abstract][Full Text] [Related]
6. SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair. Kanu N; Grönroos E; Martinez P; Burrell RA; Yi Goh X; Bartkova J; Maya-Mendoza A; Mistrík M; Rowan AJ; Patel H; Rabinowitz A; East P; Wilson G; Santos CR; McGranahan N; Gulati S; Gerlinger M; Birkbak NJ; Joshi T; Alexandrov LB; Stratton MR; Powles T; Matthews N; Bates PA; Stewart A; Szallasi Z; Larkin J; Bartek J; Swanton C Oncogene; 2015 Nov; 34(46):5699-708. PubMed ID: 25728682 [TBL] [Abstract][Full Text] [Related]
7. Functional Studies on Primary Tubular Epithelial Cells Indicate a Tumor Suppressor Role of SETD2 in Clear Cell Renal Cell Carcinoma. Li J; Kluiver J; Osinga J; Westers H; van Werkhoven MB; Seelen MA; Sijmons RH; van den Berg A; Kok K Neoplasia; 2016 Jun; 18(6):339-46. PubMed ID: 27292023 [TBL] [Abstract][Full Text] [Related]
8. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. González-Rodríguez P; Engskog-Vlachos P; Zhang H; Murgoci AN; Zerdes I; Joseph B Cell Death Dis; 2020 Jan; 11(1):69. PubMed ID: 31988284 [TBL] [Abstract][Full Text] [Related]
9. Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development. Li L; Miao W; Huang M; Williams P; Wang Y Mol Cell Proteomics; 2019 Mar; 18(3):437-447. PubMed ID: 30487242 [TBL] [Abstract][Full Text] [Related]
10. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes. Xie Y; Sahin M; Sinha S; Wang Y; Nargund AM; Lyu Y; Han S; Dong Y; Hsieh JJ; Leslie CS; Cheng EH Nat Cancer; 2022 Feb; 3(2):188-202. PubMed ID: 35115713 [TBL] [Abstract][Full Text] [Related]
11. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma. Bihr S; Ohashi R; Moore AL; Rüschoff JH; Beisel C; Hermanns T; Mischo A; Corrò C; Beyer J; Beerenwinkel N; Moch H; Schraml P Neoplasia; 2019 Feb; 21(2):247-256. PubMed ID: 30660076 [TBL] [Abstract][Full Text] [Related]
12. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Xiang W; He J; Huang C; Chen L; Tao D; Wu X; Wang M; Luo G; Xiao X; Zeng F; Jiang G Oncotarget; 2015 Feb; 6(6):4066-79. PubMed ID: 25714014 [TBL] [Abstract][Full Text] [Related]
13. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Duns G; van den Berg E; van Duivenbode I; Osinga J; Hollema H; Hofstra RM; Kok K Cancer Res; 2010 Jun; 70(11):4287-91. PubMed ID: 20501857 [TBL] [Abstract][Full Text] [Related]
14. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Ibragimova I; Maradeo ME; Dulaimi E; Cairns P Epigenetics; 2013 May; 8(5):486-93. PubMed ID: 23644518 [TBL] [Abstract][Full Text] [Related]
15. SETD2, an epigenetic tumor suppressor: a focused review on GI tumor. Hu M; Hu M; Zhang Q; Lai J; Liu X Front Biosci (Landmark Ed); 2020 Jan; 25(4):781-797. PubMed ID: 31585917 [TBL] [Abstract][Full Text] [Related]
16. SETD2 Deficiency Confers Sensitivity to Dual Inhibition of DNA Methylation and PARP in Kidney Cancer. Zhou X; Sekino Y; Li HT; Fu G; Yang Z; Zhao S; Gujar H; Zu X; Weisenberger DJ; Gill IS; Tulpule V; D'souza A; Quinn DI; Han B; Liang G Cancer Res; 2023 Nov; 83(22):3813-3826. PubMed ID: 37695044 [TBL] [Abstract][Full Text] [Related]
17. Multilevel Regulation of β-Catenin Activity by SETD2 Suppresses the Transition from Polycystic Kidney Disease to Clear Cell Renal Cell Carcinoma. Rao H; Li X; Liu M; Liu J; Feng W; Tang H; Xu J; Gao WQ; Li L Cancer Res; 2021 Jul; 81(13):3554-3567. PubMed ID: 33910928 [TBL] [Abstract][Full Text] [Related]
18. Aberrant Methylation of the 1p36 Tumor Suppressor Gene RIZ1 in Renal Cell Carcinoma. Ge P; Yu X; Wang ZC; Lin J Asian Pac J Cancer Prev; 2015; 16(9):4071-5. PubMed ID: 25987089 [TBL] [Abstract][Full Text] [Related]
19. Extensive intratumor regional epigenetic heterogeneity in clear cell renal cell carcinoma targets kidney enhancers and is associated with poor outcome. El Khoury LY; Pan X; Hlady RA; Wagner RT; Shaikh S; Wang L; Humphreys MR; Castle EP; Stanton ML; Ho TH; Robertson KD Clin Epigenetics; 2023 Apr; 15(1):71. PubMed ID: 37120552 [TBL] [Abstract][Full Text] [Related]
20. A role for SETD2 loss in tumorigenesis through DNA methylation dysregulation. Javaid H; Barberis A; Chervova O; Nassiri I; Voloshin V; Sato Y; Ogawa S; Fairfax B; Buffa F; Humphrey TC BMC Cancer; 2023 Aug; 23(1):721. PubMed ID: 37528416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]