These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 26646403)
1. Effect of Cd⁺² on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australis-rhizosphere. Zúñiga-Silva JR; Chan-Cupul W; Kuschk P; Loera O; Aguilar-López R; Rodríguez-Vázquez R Ecotoxicology; 2016 Mar; 25(2):367-79. PubMed ID: 26646403 [TBL] [Abstract][Full Text] [Related]
2. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Scervino JM; Papinutti VL; Godoy MS; Rodriguez MA; Della Monica I; Recchi M; Pettinari MJ; Godeas AM J Appl Microbiol; 2011 May; 110(5):1215-23. PubMed ID: 21324053 [TBL] [Abstract][Full Text] [Related]
3. Effect of an organophosphate pesticide, monocrotophos, on phosphate-solubilizing efficiency of soil fungal isolates. Jain R; Garg V; Saxena J Appl Biochem Biotechnol; 2015 Jan; 175(2):813-24. PubMed ID: 25344433 [TBL] [Abstract][Full Text] [Related]
4. Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Xiao C; Chi R; Li X; Xia M; Xia Z Appl Biochem Biotechnol; 2011 Sep; 165(2):719-27. PubMed ID: 21625871 [TBL] [Abstract][Full Text] [Related]
5. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Mukhtar S; Shahid I; Mehnaz S; Malik KA Microbiol Res; 2017 Dec; 205():107-117. PubMed ID: 28942836 [TBL] [Abstract][Full Text] [Related]
6. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Yin Z; Shi F; Jiang H; Roberts DP; Chen S; Fan B Can J Microbiol; 2015 Dec; 61(12):913-23. PubMed ID: 26469739 [TBL] [Abstract][Full Text] [Related]
7. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. Chai B; Wu Y; Liu P; Liu B; Gao M J Basic Microbiol; 2011 Feb; 51(1):5-14. PubMed ID: 21259286 [TBL] [Abstract][Full Text] [Related]
8. [Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus]. Li DD; Shang SH; Han W; Fang NN; Yi YL Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2384-2392. PubMed ID: 31418242 [TBL] [Abstract][Full Text] [Related]
9. Assessment of rhizospheric culturable bacteria of Phragmites australis and Juncus effusus from polluted sites. Pereira SI; Pires C; Henriques I; Correia A; Magan N; Castro PM J Basic Microbiol; 2015 Oct; 55(10):1179-90. PubMed ID: 26059184 [TBL] [Abstract][Full Text] [Related]
10. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Ahmad I; Ansari MI; Aqil F Indian J Exp Biol; 2006 Jan; 44(1):73-6. PubMed ID: 16430095 [TBL] [Abstract][Full Text] [Related]
11. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates. Wu Y; He Y; Yin H; Chen W; Wang Z; Xu L; Zhang A Pak J Biol Sci; 2012 Dec; 15(23):1144-51. PubMed ID: 24261118 [TBL] [Abstract][Full Text] [Related]
12. Phosphate Solubilization Potential of Rhizosphere Fungi Isolated from Plants in Jimma Zone, Southwest Ethiopia. Elias F; Woyessa D; Muleta D Int J Microbiol; 2016; 2016():5472601. PubMed ID: 27688771 [TBL] [Abstract][Full Text] [Related]
13. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Reyes I; Bernier L; Antoun H Microb Ecol; 2002 Jul; 44(1):39-48. PubMed ID: 12019460 [TBL] [Abstract][Full Text] [Related]
14. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB. Li L; Chen R; Zuo Z; Lv Z; Yang Z; Mao W; Liu Y; Zhou Y; Huang J; Song Z World J Microbiol Biotechnol; 2020 Jan; 36(2):27. PubMed ID: 31997003 [TBL] [Abstract][Full Text] [Related]
15. Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity. Wang M; Li S; Chen S; Meng N; Li X; Zheng H; Zhao C; Wang D Sci Total Environ; 2019 Feb; 649():413-421. PubMed ID: 30176454 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Mukhtar S; Zareen M; Khaliq Z; Mehnaz S; Malik KA J Appl Microbiol; 2020 Feb; 128(2):556-573. PubMed ID: 31652362 [TBL] [Abstract][Full Text] [Related]
17. [Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.)in rhizosphere of Pinus tabuliformis in iron tailings yard.]. Wang JJ; Yan AH; Wang W; Li JQ; Li YL Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3705-3711. PubMed ID: 29696871 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola. Liu W; Wang B; Wang Q; Hou J; Wu L; Wood JL; Luo Y; Franks AE Environ Sci Pollut Res Int; 2016 Sep; 23(18):18621-9. PubMed ID: 27306207 [TBL] [Abstract][Full Text] [Related]
19. Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Wahid OA; Mehana TA Microbiol Res; 2000 Sep; 155(3):221-7. PubMed ID: 11061191 [TBL] [Abstract][Full Text] [Related]
20. Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth. Soares MA; Li HY; Kowalski KP; Bergen M; Torres MS; White JF Microb Ecol; 2016 Aug; 72(2):407-17. PubMed ID: 27260154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]