BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26646418)

  • 1. Spectroscopy and Fluorescence Lifetime Imaging Microscopy To Probe the Interaction of Bovine Serum Albumin with Graphene Oxide.
    Kuchlyan J; Kundu N; Banik D; Roy A; Sarkar N
    Langmuir; 2015 Dec; 31(51):13793-801. PubMed ID: 26646418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the interaction of graphene oxide‑silver nanocomposites with bovine serum albumin and the formation of nanoparticle-protein corona.
    Xu X; Mao X; Wang Y; Li D; Du Z; Wu W; Jiang L; Yang J; Li J
    Int J Biol Macromol; 2018 Sep; 116():492-501. PubMed ID: 29753014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster Energy Resonance Transfer.
    Togashi DM; Ryder AG
    Biophys Chem; 2010 Nov; 152(1-3):55-64. PubMed ID: 20724058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural transformation of bovine serum albumin induced by dimethyl sulfoxide and probed by fluorescence correlation spectroscopy and additional methods.
    Pabbathi A; Patra S; Samanta A
    Chemphyschem; 2013 Aug; 14(11):2441-9. PubMed ID: 23780704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of graphene oxide with albumins: Effect of size, pH, and temperature.
    Šimšíková M
    Arch Biochem Biophys; 2016 Mar; 593():69-79. PubMed ID: 26873532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing of hydrophobic cavity of serum albumin by an adenosine analogue: fluorescence correlation and ensemble spectroscopic studies.
    Nag M; Bera K; Chakraborty S; Basak S
    J Photochem Photobiol B; 2013 Oct; 127():202-11. PubMed ID: 24061159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic study of the interaction between lycopene and bovine serum albumin.
    Rodríguez Galdón B; Pinto Corraliza C; Cestero Carrillo JJ; Macías Laso P
    Luminescence; 2013; 28(5):765-70. PubMed ID: 23008219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Controllable Nanoscale Heat-Denatured Bovine Serum Albumin Films on Graphene.
    Zhou L; Wang K; Wu Z; Dong H; Sun H; Cheng X; Zhang HL; Zhou H; Jia C; Jin Q; Mao H; Coll JL; Zhao J
    Langmuir; 2016 Dec; 32(48):12623-12631. PubMed ID: 27934532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation state of graphene oxide nanosheets drives their interaction with proteins: A case of bovine serum albumin.
    Ekal NS; Patil R; Ranjan N; Bahadur P; Tiwari S
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112367. PubMed ID: 35114436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethidium bromide-adsorbed graphene templates as a platform for preferential sensing of DNA.
    Nandi S; Routh P; Layek RK; Nandi AK
    Biomacromolecules; 2012 Oct; 13(10):3181-8. PubMed ID: 22984813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave-assisted hybrid chemical approach.
    Ranjan S; Dasgupta N; Srivastava P; Ramalingam C
    J Photochem Photobiol B; 2016 Aug; 161():472-81. PubMed ID: 27318604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.
    Ma P; Chen A; Wu Y; Fu Z; Kong W; Che L; Ma R
    J Colloid Interface Sci; 2014 Mar; 417():293-300. PubMed ID: 24407690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple spectroscopic studies on the interaction between olaquindox, a feed additive, and bovine serum albumin.
    Xu T; Guo X; Zhang L; Pan F; Lv J; Zhang Y; Jin H
    Food Chem Toxicol; 2012 Jul; 50(7):2540-6. PubMed ID: 22525866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on the interaction of Phacolysin and bovine serum albumin.
    Yu X; Liao Z; Yao Q; Liu H; Xie W
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jun; 127():231-6. PubMed ID: 24632176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Availability of the basal planes of graphene oxide determines whether it is antibacterial.
    Hui L; Piao JG; Auletta J; Hu K; Zhu Y; Meyer T; Liu H; Yang L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13183-90. PubMed ID: 25026597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy.
    Bhogale A; Patel N; Sarpotdar P; Mariam J; Dongre PM; Miotello A; Kothari DC
    Colloids Surf B Biointerfaces; 2013 Feb; 102():257-64. PubMed ID: 23010116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on the interaction of Congo Red with bovine serum albumin.
    Zhang YZ; Xiang X; Mei P; Dai J; Zhang LL; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):907-14. PubMed ID: 19155189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graphene binding-promoted fluorescence enhancement for bovine serum albumin recognition.
    Xu Y; Malkovskiy A; Pang Y
    Chem Commun (Camb); 2011 Jun; 47(23):6662-4. PubMed ID: 21559544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA).
    Tian Z; Zang F; Luo W; Zhao Z; Wang Y; Xu X; Wang C
    J Photochem Photobiol B; 2015 Jan; 142():103-9. PubMed ID: 25528194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.