These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 26646505)

  • 41. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass.
    Yli-Urpo H; Lassila LV; Närhi T; Vallittu PK
    Dent Mater; 2005 Mar; 21(3):201-9. PubMed ID: 15705426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The formulation of glass ionomer cements and the amount of fluoride].
    De Moor R
    Rev Belge Med Dent (1984); 1996; 51(1):9-21. PubMed ID: 9304125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR).
    Stamboulis A; Law RV; Hill RG
    Biomaterials; 2004 Aug; 25(17):3907-13. PubMed ID: 15020167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orthodontic bracket bonding with a plasma-arc light and resin-reinforced glass ionomer cement.
    Ishikawa H; Komori A; Kojima I; Ando F
    Am J Orthod Dentofacial Orthop; 2001 Jul; 120(1):58-63. PubMed ID: 11455379
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tissue response to experimental dental cements prepared from a modified powder glass composition.
    Boaventura JM; Bertolini MJ; Padovani GC; de Oliveira MR; Zaghete MA; de Oliveira Júnior OB; de Andrade MF
    Dent Mater J; 2012; 31(4):583-92. PubMed ID: 22864211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a novel light-cured star-shape poly(acrylic acid)-composed glass-ionomer cement: fluoride release, water sorption, shrinkage, and hygroscopic expansion.
    Zhao J; Platt JA; Xie D
    Eur J Oral Sci; 2009 Dec; 117(6):755-65. PubMed ID: 20121941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Review paper: Role of aluminum in glass-ionomer dental cements and its biological effects.
    Nicholson JW; Czarnecka B
    J Biomater Appl; 2009 Nov; 24(4):293-308. PubMed ID: 19737809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous release of fluoride and aluminum from dental materials in various immersion media.
    Hayacibara MF; Ambrozano GM; Cury JA
    Oper Dent; 2004; 29(1):16-22. PubMed ID: 14753327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SEM analyses of repaired glass-ionomer cements.
    Jamaluddin A; Pearson GJ
    Asian J Aesthet Dent; 1993 Jan; 1(1):19-23. PubMed ID: 8149147
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of hygroscopic expansion on the push-out resistance of glass ionomer-based cements used for the luting of glass fiber posts.
    Cury AH; Goracci C; de Lima Navarro MF; Carvalho RM; Sadek FT; Tay FR; Ferrari M
    J Endod; 2006 Jun; 32(6):537-40. PubMed ID: 16728245
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term mechanical characteristics of resin-modified glass ionomer restorative materials.
    Uno S; Finger WJ; Fritz U
    Dent Mater; 1996 Jan; 12(1):64-9. PubMed ID: 8598253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy.
    Boyd D; Towler MR; Law RV; Hill RG
    J Mater Sci Mater Med; 2006 May; 17(5):397-402. PubMed ID: 16688578
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glass ionomer polyalkenoate cements and related materials: past, present and future.
    Hill R
    Br Dent J; 2022 May; 232(9):653-657. PubMed ID: 35562467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of polyacrylic acid on the apatite formation of a bioactive ceramic in a simulated body fluid: fundamental examination of the possibility of obtaining bioactive glass-ionomer cements for orthopaedic use.
    Kamitakahara M; Kawashita M; Kokubo T; Nakamura T
    Biomaterials; 2001 Dec; 22(23):3191-6. PubMed ID: 11603591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting.
    Tian KV; Yang B; Yue Y; Bowron DT; Mayers J; Donnan RS; Dobó-Nagy C; Nicholson JW; Fang DC; Greer AL; Chass GA; Greaves GN
    Nat Commun; 2015 Nov; 6():8631. PubMed ID: 26548704
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glass-ionomers: bioactive implant materials.
    Brook IM; Hatton PV
    Biomaterials; 1998 Mar; 19(6):565-71. PubMed ID: 9645564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Initial in-vivo evaluation of glass-ionomer cements for use as alveolar bone substitutes.
    Brook IM; Craig GT; Lamb DJ
    Clin Mater; 1991; 7(4):295-300. PubMed ID: 10149144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of glass composition on the properties of glass polyalkenoate cements. Part IV: influence of fluorine content.
    Griffin SG; Hill RG
    Biomaterials; 2000 Apr; 21(7):693-8. PubMed ID: 10711966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations.
    Tilocca A; Cormack AN; de Leeuw NH
    Faraday Discuss; 2007; 136():45-55; discussion 107-23. PubMed ID: 17955802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aluminium catalysed oligomerisation in cement-forming silicate systems.
    Salha MS; Yada RY; Farrar DH; Chass GA; Tian KV; Bodo E
    Phys Chem Chem Phys; 2022 Dec; 25(1):455-461. PubMed ID: 36477563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.