BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26646591)

  • 1. Low β₂-adrenergic receptor level may promote development of castration resistant prostate cancer and altered steroid metabolism.
    Braadland PR; Grytli HH; Ramberg H; Katz B; Kellman R; Gauthier-Landry L; Fazli L; Krobert KA; Wang W; Levy FO; Bjartell A; Berge V; Rennie PS; Mellgren G; Mælandsmo GM; Svindland A; Barbier O; Taskén KA
    Oncotarget; 2016 Jan; 7(2):1878-94. PubMed ID: 26646591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Androgen glucuronidation: an unexpected target for androgen deprivation therapy, with prognosis and diagnostic implications.
    Grosse L; Pâquet S; Caron P; Fazli L; Rennie PS; Bélanger A; Barbier O
    Cancer Res; 2013 Dec; 73(23):6963-71. PubMed ID: 24121496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of dihydrotestosterone-inactivation activity promotes prostate cancer castration resistance detectable by functional imaging.
    Zhu Z; Chung YM; Sergeeva O; Kepe V; Berk M; Li J; Ko HK; Li Z; Petro M; DiFilippo FP; Lee Z; Sharifi N
    J Biol Chem; 2018 Nov; 293(46):17829-17837. PubMed ID: 30262668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression.
    Komura K; Jeong SH; Hinohara K; Qu F; Wang X; Hiraki M; Azuma H; Lee GS; Kantoff PW; Sweeney CJ
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6259-64. PubMed ID: 27185910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of exogenous androgen dependence by prostate tumor cells is associated with elevated glucuronidation potential.
    Zimmer BM; Howell ME; Wei Q; Ma L; Romsdahl T; Loughman EG; Markham JE; Seravalli J; Barycki JJ; Simpson MA
    Horm Cancer; 2016 Aug; 7(4):260-71. PubMed ID: 27307252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UGT2B17 Expedites Progression of Castration-Resistant Prostate Cancers by Promoting Ligand-Independent AR Signaling.
    Li H; Xie N; Chen R; Verreault M; Fazli L; Gleave ME; Barbier O; Dong X
    Cancer Res; 2016 Nov; 76(22):6701-6711. PubMed ID: 27659047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The β
    Braadland PR; Ramberg H; Grytli HH; Urbanucci A; Nielsen HK; Guldvik IJ; Engedal A; Ketola K; Wang W; Svindland A; Mills IG; Bjartell A; Taskén KA
    Mol Cancer Res; 2019 Nov; 17(11):2154-2168. PubMed ID: 31395667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.
    Hagberg Thulin M; Nilsson ME; Thulin P; Céraline J; Ohlsson C; Damber JE; Welén K
    Mol Cell Endocrinol; 2016 Feb; 422():182-191. PubMed ID: 26586211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet-Synthesized Testosterone in Men with Prostate Cancer Induces Androgen Receptor Signaling.
    Zaslavsky AB; Gloeckner-Kalousek A; Adams M; Putluri N; Venghatakrishnan H; Li H; Morgan TM; Feng FY; Tewari M; Sreekumar A; Palapattu GS
    Neoplasia; 2015 Jun; 17(6):490-6. PubMed ID: 26152357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer.
    Lam HM; Ouyang B; Chen J; Ying J; Wang J; Wu CL; Jia L; Medvedovic M; Vessella RL; Ho SM
    Endocr Relat Cancer; 2014; 21(6):903-14. PubMed ID: 25287069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulforaphane increases the efficacy of anti-androgens by rapidly decreasing androgen receptor levels in prostate cancer cells.
    Khurana N; Talwar S; Chandra PK; Sharma P; Abdel-Mageed AB; Mondal D; Sikka SC
    Int J Oncol; 2016 Oct; 49(4):1609-19. PubMed ID: 27499349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activators of the farnesoid X receptor negatively regulate androgen glucuronidation in human prostate cancer LNCAP cells.
    Kaeding J; Bouchaert E; Bélanger J; Caron P; Chouinard S; Verreault M; Larouche O; Pelletier G; Staels B; Bélanger A; Barbier O
    Biochem J; 2008 Mar; 410(2):245-53. PubMed ID: 17988216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression.
    Zhang A; Zhang J; Plymate S; Mostaghel EA
    Horm Cancer; 2016 Apr; 7(2):104-13. PubMed ID: 26797685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple roles for UDP-glucuronosyltransferase (UGT)2B15 and UGT2B17 enzymes in androgen metabolism and prostate cancer evolution.
    Gauthier-Landry L; Bélanger A; Barbier O
    J Steroid Biochem Mol Biol; 2015 Jan; 145():187-92. PubMed ID: 24861263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracrine androgen biosynthesis in renal cell carcinoma.
    Lee GT; Han CS; Kwon YS; Patel R; Modi PK; Kwon SJ; Faiena I; Patel N; Singer EA; Ahn HJ; Kim WJ; Kim IY
    Br J Cancer; 2017 Mar; 116(7):937-943. PubMed ID: 28253524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and regulation of UDP-glucuronosyltransferases in steroid target tissues.
    Bélanger A; Hum DW; Beaulieu M; Lévesque E; Guillemette C; Tchernof A; Bélanger G; Turgeon D; Dubois S
    J Steroid Biochem Mol Biol; 1998 Apr; 65(1-6):301-10. PubMed ID: 9699884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of the androgen-conjugating UGT2B15 and UGT2B17 enzymes in prostate tumor cells during cancer progression.
    Pâquet S; Fazli L; Grosse L; Verreault M; Têtu B; Rennie PS; Bélanger A; Barbier O
    J Clin Endocrinol Metab; 2012 Mar; 97(3):E428-32. PubMed ID: 22170718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of interleukins on UGT2B15 and UGT2B17 steroid uridine diphosphate-glucuronosyltransferase expression and activity in the LNCaP cell line.
    Lévesque E; Beaulieu M; Guillemette C; Hum DW; Bélanger A
    Endocrinology; 1998 May; 139(5):2375-81. PubMed ID: 9564848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an anabolic selective androgen receptor modulator that actively induces death of androgen-independent prostate cancer cells.
    Schmidt A; Meissner RS; Gentile MA; Chisamore MJ; Opas EE; Scafonas A; Cusick TE; Gambone C; Pennypacker B; Hodor P; Perkins JJ; Bai C; Ferraro D; Bettoun DJ; Wilkinson HA; Alves SE; Flores O; Ray WJ
    J Steroid Biochem Mol Biol; 2014 Sep; 143():29-39. PubMed ID: 24565564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AKR1C3 mediates pan-AR antagonist resistance in castration-resistant prostate cancer.
    Hertzog JR; Zhang Z; Bignan G; Connolly PJ; Heindl JE; Janetopoulos CJ; Rupnow BA; McDevitt TM
    Prostate; 2020 Oct; 80(14):1223-1232. PubMed ID: 33258507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.