These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26646617)

  • 1. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells.
    Song R; Peng W; Liu P; Acar M
    BMC Syst Biol; 2015 Dec; 9():91. PubMed ID: 26646617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae.
    Münzner U; Klipp E; Krantz M
    Nat Commun; 2019 Mar; 10(1):1308. PubMed ID: 30899000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity.
    Braunewell S; Bornholdt S
    J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for estimating stochastic noise in large genetic regulatory networks.
    Orrell D; Ramsey S; de Atauri P; Bolouri H
    Bioinformatics; 2005 Jan; 21(2):208-17. PubMed ID: 15319259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic Boolean model of normal and aberrant cell cycles in budding yeast.
    Taoma K; Tyson JJ; Laomettachit T; Kraikivski P
    NPJ Syst Biol Appl; 2024 Oct; 10(1):121. PubMed ID: 39420008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zooming in on yeast osmoadaptation.
    Kühn C; Klipp E
    Adv Exp Med Biol; 2012; 736():293-310. PubMed ID: 22161336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.
    Huang JY; Huang CW; Kao KC; Lai PY
    Gene; 2013 Apr; 518(1):35-41. PubMed ID: 23274654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging.
    Qin H
    BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth-related model of the GAL system in Saccharomyces cerevisiae predicts behaviour of several mutant strains.
    Pannala VR; Hazarika SJ; Bhat PJ; Bhartiya S; Venkatesh KV
    IET Syst Biol; 2012 Apr; 6(2):44-53. PubMed ID: 22519357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic switching as a survival strategy in fluctuating environments.
    Acar M; Mettetal JT; van Oudenaarden A
    Nat Genet; 2008 Apr; 40(4):471-5. PubMed ID: 18362885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches.
    Cantone I; Marucci L; Iorio F; Ricci MA; Belcastro V; Bansal M; Santini S; di Bernardo M; di Bernardo D; Cosma MP
    Cell; 2009 Apr; 137(1):172-81. PubMed ID: 19327819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise reduction facilitated by dosage compensation in gene networks.
    Peng W; Song R; Acar M
    Nat Commun; 2016 Oct; 7():12959. PubMed ID: 27694830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling.
    Barberis M
    Adv Exp Med Biol; 2012; 736():135-67. PubMed ID: 22161326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae.
    Chen KC; Wang TY; Tseng HH; Huang CY; Kao CY
    Bioinformatics; 2005 Jun; 21(12):2883-90. PubMed ID: 15802287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaches to modeling gene regulatory networks: a gentle introduction.
    Schlitt T
    Methods Mol Biol; 2013; 1021():13-35. PubMed ID: 23715978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single cell resolution in regulation of gene expression.
    Bahcall OG
    Mol Syst Biol; 2005; 1():2005.0015. PubMed ID: 16729050
    [No Abstract]   [Full Text] [Related]  

  • 17. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling stochastic gene expression in growing cells.
    Gomez D; Marathe R; Bierbaum V; Klumpp S
    J Theor Biol; 2014 May; 348():1-11. PubMed ID: 24480713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants.
    Gallegos JE; Adames NR; Rogers MF; Kraikivski P; Ibele A; Nurzynski-Loth K; Kudlow E; Murali TM; Tyson JJ; Peccoud J
    NPJ Syst Biol Appl; 2020 May; 6(1):11. PubMed ID: 32376972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.