These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 26646669)
1. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. Bellucci D; Sola A; Cannillo V J Biomed Mater Res A; 2016 Apr; 104(4):1030-56. PubMed ID: 26646669 [TBL] [Abstract][Full Text] [Related]
2. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356 [TBL] [Abstract][Full Text] [Related]
3. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. Kong YM; Kim HE; Kim HW J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029 [TBL] [Abstract][Full Text] [Related]
4. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder. Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803 [TBL] [Abstract][Full Text] [Related]
5. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. Nilen RW; Richter PW J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322 [TBL] [Abstract][Full Text] [Related]
6. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. Hesaraki S; Safari M; Shokrgozar MA J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments. Sprio S; Guicciardi S; Dapporto M; Melandri C; Tampieri A J Mech Behav Biomed Mater; 2013 Jan; 17():1-10. PubMed ID: 23122887 [TBL] [Abstract][Full Text] [Related]
8. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity. Yatongchai C; Placek LM; Curran DJ; Towler MR; Wren AW J Biomater Appl; 2015 Nov; 30(5):495-511. PubMed ID: 26116020 [TBL] [Abstract][Full Text] [Related]
9. A quantitative study of the sintering and mechanical properties of hydroxyapatite/phosphate glass composites. Tancred DC; McCormack BA; Carr AJ Biomaterials; 1998 Oct; 19(19):1735-43. PubMed ID: 9856584 [TBL] [Abstract][Full Text] [Related]
10. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility. Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of biomaterials for conjugation with human fetal osteoblasts. Borcard F; Kong P; Journot C; Staedler D; Sturzenegger PN; Juillerat FK; Gonzenbach UT; Juillerat-Jeanneret L; Gerber-Lemaire S Chimia (Aarau); 2013; 67(4):213-7. PubMed ID: 23967691 [TBL] [Abstract][Full Text] [Related]
12. The mechanical properties of calcium phospate ceramics modified by collagen coating and populated by osteoblasts. Brodie JC; Merry J; Grant MH J Mater Sci Mater Med; 2006 Jan; 17(1):43-8. PubMed ID: 16389471 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
14. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds. Bellucci D; Sola A; Cannillo V Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2138-51. PubMed ID: 23498242 [TBL] [Abstract][Full Text] [Related]
15. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth. Li XW; Yasuda HY; Umakoshi Y J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357 [TBL] [Abstract][Full Text] [Related]
16. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942 [TBL] [Abstract][Full Text] [Related]
17. Formation of osteoclast-like cells on HA and TCP ceramics. Detsch R; Mayr H; Ziegler G Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325 [TBL] [Abstract][Full Text] [Related]
18. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
19. In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics. Lee JH; Lee CK; Chang BS; Ryu HS; Seo JH; Hong KS; Kim H J Biomed Mater Res A; 2006 May; 77(2):362-9. PubMed ID: 16425241 [TBL] [Abstract][Full Text] [Related]
20. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]