These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 26646669)
21. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
22. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Bellucci D; Sola A; Anesi A; Salvatori R; Chiarini L; Cannillo V Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():196-205. PubMed ID: 25842126 [TBL] [Abstract][Full Text] [Related]
23. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
24. Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. Lopes JH; Magalhães JA; Gouveia RF; Bertran CA; Motisuke M; Camargo SEA; Trichês ES J Mech Behav Biomed Mater; 2016 Sep; 62():10-23. PubMed ID: 27161958 [TBL] [Abstract][Full Text] [Related]
25. A new hydroxyapatite-based biocomposite for bone replacement. Bellucci D; Sola A; Gazzarri M; Chiellini F; Cannillo V Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1091-101. PubMed ID: 23827547 [TBL] [Abstract][Full Text] [Related]
26. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering. García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204 [TBL] [Abstract][Full Text] [Related]
27. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
28. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity. Sola A; Bellucci D; Raucci MG; Zeppetelli S; Ambrosio L; Cannillo V J Biomed Mater Res A; 2012 Feb; 100(2):305-22. PubMed ID: 22052581 [TBL] [Abstract][Full Text] [Related]
29. The effect of hot pressing on the physical properties of glass reinforced hydroxyapatite. Georgiou G; Knowles JC; Barralet JE; Kong YM; Kim HE J Mater Sci Mater Med; 2004 Jun; 15(6):705-10. PubMed ID: 15346739 [TBL] [Abstract][Full Text] [Related]
30. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses. Bachar A; Mercier C; Tricoteaux A; Hampshire S; Leriche A; Follet C J Mech Behav Biomed Mater; 2013 Jul; 23():133-48. PubMed ID: 23676624 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
32. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. França R; Samani TD; Bayade G; Yahia L; Sacher E J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717 [TBL] [Abstract][Full Text] [Related]
33. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. Hsu YH; Turner IG; Miles AW J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009 [TBL] [Abstract][Full Text] [Related]
34. [Research development of hydroxyapatite-based composites used as hard tissue replacement]. Ning C; Dai K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):550-4. PubMed ID: 14565037 [TBL] [Abstract][Full Text] [Related]
36. Composite bone substitute materials based on beta-tricalcium phosphate and magnesium-containing sol-gel derived bioactive glass. Hesaraki S; Safari M; Shokrgozar MA J Mater Sci Mater Med; 2009 Oct; 20(10):2011-7. PubMed ID: 19466530 [TBL] [Abstract][Full Text] [Related]
37. Mechanical properties of bioactive glasses, glass-ceramics and composites. Thompson ID; Hench LL Proc Inst Mech Eng H; 1998; 212(2):127-36. PubMed ID: 9612004 [TBL] [Abstract][Full Text] [Related]
38. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: synthesis, microstructure and biological responsiveness. Bellucci D; Sola A; Cacciotti I; Bartoli C; Gazzarri M; Bianco A; Chiellini F; Cannillo V Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():312-24. PubMed ID: 25063124 [TBL] [Abstract][Full Text] [Related]
39. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Kaur G; Kumar V; Baino F; Mauro JC; Pickrell G; Evans I; Bretcanu O Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109895. PubMed ID: 31500047 [TBL] [Abstract][Full Text] [Related]
40. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study]. Urban K; Povýsil C; Spelda S Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]