These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 26646669)
41. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering. Mondal D; Nguyen L; Oh IH; Lee BT J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893 [TBL] [Abstract][Full Text] [Related]
42. Hydroxyapatite ceramics with selected sintering additives. Suchanek W; Yashima M; Kakihana M; Yoshimura M Biomaterials; 1997 Jul; 18(13):923-33. PubMed ID: 9199762 [TBL] [Abstract][Full Text] [Related]
43. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. Sprio S; Tampieri A; Celotti G; Landi E J Mech Behav Biomed Mater; 2009 Apr; 2(2):147-55. PubMed ID: 19627818 [TBL] [Abstract][Full Text] [Related]
44. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687 [TBL] [Abstract][Full Text] [Related]
45. Near net-shape fabrication of hydroxyapatite glass composites. Zhu Q; De With G; Dortmans LJ; Feenstra F J Mater Sci Mater Med; 2004 Nov; 15(11):1187-91. PubMed ID: 15880926 [TBL] [Abstract][Full Text] [Related]
46. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Xin R; Leng Y; Chen J; Zhang Q Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923 [TBL] [Abstract][Full Text] [Related]
48. Synthesis of bioactive and machinable miserite glass-ceramics for dental implant applications. Saadaldin SA; Dixon SJ; Costa DO; Rizkalla AS Dent Mater; 2013 Jun; 29(6):645-55. PubMed ID: 23587360 [TBL] [Abstract][Full Text] [Related]
49. Reprint of: Review of bioactive glass: From Hench to hybrids. Jones JR Acta Biomater; 2015 Sep; 23 Suppl():S53-82. PubMed ID: 26235346 [TBL] [Abstract][Full Text] [Related]
50. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. Ghosh SK; Nandi SK; Kundu B; Datta S; De DK; Roy SK; Basu D J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):217-27. PubMed ID: 18161811 [TBL] [Abstract][Full Text] [Related]
51. Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications. Shavandi A; Bekhit Ael-D; Ali MA; Sun Z; Gould M Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():481-93. PubMed ID: 26249618 [TBL] [Abstract][Full Text] [Related]
52. Bioglass® 45S5-based composites for bone tissue engineering and functional applications. Rizwan M; Hamdi M; Basirun WJ J Biomed Mater Res A; 2017 Nov; 105(11):3197-3223. PubMed ID: 28686004 [TBL] [Abstract][Full Text] [Related]
53. TEM study of calcium phosphate precipitation on HA/TCP ceramics. Leng Y; Chen J; Qu S Biomaterials; 2003 Jun; 24(13):2125-31. PubMed ID: 12699649 [TBL] [Abstract][Full Text] [Related]
55. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Lobo SE; Glickman R; da Silva WN; Arinzeh TL; Kerkis I Cell Tissue Res; 2015 Aug; 361(2):477-95. PubMed ID: 25676006 [TBL] [Abstract][Full Text] [Related]
56. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541 [TBL] [Abstract][Full Text] [Related]
57. Gel-derived bioglass as a compound of hydroxyapatite composites. Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249 [TBL] [Abstract][Full Text] [Related]
58. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically. Morimoto S; Anada T; Honda Y; Suzuki O Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]