BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26646734)

  • 41. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability.
    Li J; Zhu Y; Wang L; Cao C
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18742-50. PubMed ID: 25322171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interfacial Adsorption and Redox Coupling of Li4Ti5O12 with Nanographene for High-Rate Lithium Storage.
    Bae S; Nam I; Park S; Yoo YG; Yu S; Lee JM; Han JW; Yi J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16565-72. PubMed ID: 26168058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mesoporous Single-Crystal Lithium Titanate Enabling Fast-Charging Li-Ion Batteries.
    Jin X; Han Y; Zhang Z; Chen Y; Li J; Yang T; Wang X; Li W; Han X; Wang Z; Liu X; Jiao H; Ke X; Sui M; Cao R; Zhang G; Tang Y; Yan P; Jiao S
    Adv Mater; 2022 May; 34(18):e2109356. PubMed ID: 35262214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pine-Needle-Like Cu-Co Skeleton Composited with Li
    Zhou CA; Xia X; Wang Y; Yao Z; Wu J; Wang X; Tu J
    Small; 2018 Apr; 14(16):e1704339. PubMed ID: 29573548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-dimensional wavelike spinel lithium titanate for fast lithium storage.
    Liu J; Wei X; Liu XW
    Sci Rep; 2015 May; 5():9782. PubMed ID: 25985465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-layering of carbon conductivity enhancers for boosting rapid recharging performance of high mass loading lithium ion battery electrodes.
    Lee SH; Sun Y; Grant PS
    J Colloid Interface Sci; 2024 Feb; 655():518-526. PubMed ID: 37952455
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage.
    Zhang L; Huang Y; Zhang Y; Fan W; Liu T
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27823-30. PubMed ID: 26619894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.
    Ha SH; Shin KH; Park HW; Lee YJ
    Small; 2018 Oct; 14(43):e1703418. PubMed ID: 29399960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries.
    Sun Q; Fang X; Weng W; Deng J; Chen P; Ren J; Guan G; Wang M; Peng H
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10539-44. PubMed ID: 26178766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polymer-templated mesoporous lithium titanate microspheres for high-performance lithium batteries.
    Nguyen MT; Sutton P; Palumbo A; Fischer MG; Hua X; Gunkel I; Steiner U
    Mater Adv; 2022 Jan; 3(1):362-372. PubMed ID: 35128417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ti
    Li Y; Zhang W; Lai C; Yang T; Chang X; Zhang M; Sheng L; Yang Z; Ye D; Huang K; Xie J
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):263-269. PubMed ID: 36155921
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ synthesis of hierarchical CoFe2O4 nanoclusters/graphene aerogels and their high performance for lithium-ion batteries.
    Wang B; Wang G; Lv Z; Wang H
    Phys Chem Chem Phys; 2015 Oct; 17(40):27109-17. PubMed ID: 26411385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Interfacial Kinetics and High-Voltage/High-Rate Performance of LiCoO
    Zhou A; Dai X; Lu Y; Wang Q; Fu M; Li J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34123-34131. PubMed ID: 27960417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study of the interface between Na-rich and Li-rich phases in a Na-inserted spinel Li4Ti5O12 crystal for an electrode of a sodium-ion battery.
    Kitta M; Kataoka R; Kohyama M
    Phys Chem Chem Phys; 2016 Jul; 18(29):19888-93. PubMed ID: 27391208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries.
    Ma Y; Ding B; Ji G; Lee JY
    ACS Nano; 2013 Dec; 7(12):10870-8. PubMed ID: 24256545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lithium-Ion Batteries: Charged by Triboelectric Nanogenerators with Pulsed Output Based on the Enhanced Cycling Stability.
    Zhang X; Du X; Yin Y; Li NW; Fan W; Cao R; Xu W; Zhang C; Li C
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8676-8684. PubMed ID: 29446611
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Performance Li₄Ti₅O
    Chen C; Agrawal R; Wang C
    Nanomaterials (Basel); 2015 Aug; 5(3):1469-1480. PubMed ID: 28347076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Li4Ti5O12/TiO2@CNT Core/Shell Structure for Rechargeable Li Batteries.
    Chen L; Liu J; Niu X; Chen Y; Zhong L; Cai C; Gao L; Ni J
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7035-9. PubMed ID: 26716279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.