BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 26646738)

  • 21. Cofilin induced conformational changes in F-actin expose subdomain 2 to proteolysis.
    Muhlrad A; Kudryashov D; Michael Peyser Y; Bobkov AA; Almo SC; Reisler E
    J Mol Biol; 2004 Oct; 342(5):1559-67. PubMed ID: 15364581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connecting the dots in the mechanism of action of Cucurbitacin E (CurE) - path analysis and steered molecular dynamics reveal the precise site of entry and the passage of CurE in filamentous actin.
    Roopa L; Akshai PS; Pravin Kumar R
    J Biomol Struct Dyn; 2020 Feb; 38(3):635-646. PubMed ID: 30896293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cryo-EM structure of the bacterial actin AlfA reveals unique assembly and ATP-binding interactions and the absence of a conserved subdomain.
    Usluer GD; DiMaio F; Yang SK; Hansen JM; Polka JK; Mullins RD; Kollman JM
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3356-3361. PubMed ID: 29440491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of profilin on actin critical concentration: a theoretical analysis.
    Yarmola EG; Dranishnikov DA; Bubb MR
    Biophys J; 2008 Dec; 95(12):5544-73. PubMed ID: 18835900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A coarse-grained molecular model for actin-myosin simulation.
    Taylor WR; Katsimitsoulia Z
    J Mol Graph Model; 2010 Sep; 29(2):266-79. PubMed ID: 20724184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid molecular dynamics simulations of living filaments.
    Caby M; Hardas P; Ramachandran S; Ryckaert JP
    J Chem Phys; 2012 Mar; 136(11):114901. PubMed ID: 22443794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The oxidation produced by hydrogen peroxide on Ca-ATP-G-actin.
    Milzani A; Rossi R; Di Simplicio P; Giustarini D; Colombo R; DalleDonne I
    Protein Sci; 2000 Sep; 9(9):1774-82. PubMed ID: 11045622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cofilin and DNase I affect the conformation of the small domain of actin.
    Dedova IV; Dedov VN; Nosworthy NJ; Hambly BD; dos Remedios CG
    Biophys J; 2002 Jun; 82(6):3134-43. PubMed ID: 12023237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulations of dynamics of actin filaments by remodeling them in shear flows.
    Inoue Y; Deji T; Shimada Y; Hojo M; Adachi T
    Comput Biol Med; 2010; 40(11-12):876-82. PubMed ID: 20943218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coronin-1A stabilizes F-actin by bridging adjacent actin protomers and stapling opposite strands of the actin filament.
    Galkin VE; Orlova A; Brieher W; Kueh HY; Mitchison TJ; Egelman EH
    J Mol Biol; 2008 Feb; 376(3):607-13. PubMed ID: 18177666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution properties of tetramethylrhodamine-modified G-actin.
    Kudryashov DS; Reisler E
    Biophys J; 2003 Oct; 85(4):2466-75. PubMed ID: 14507709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41.
    Kim E; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1995 Nov; 69(5):2024-32. PubMed ID: 8580345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The open nucleotide pocket of the profilin/actin x-ray structure is unstable and closes in the absence of profilin.
    Minehardt TJ; Kollman PA; Cooke R; Pate E
    Biophys J; 2006 Apr; 90(7):2445-9. PubMed ID: 16428279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Actin's view of actomyosin interface.
    Miller CJ; Cheung P; White P; Reisler E
    Biophys J; 1995 Apr; 68(4 Suppl):50S-54S. PubMed ID: 7787100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Actin polymerization and depolymerization coupled to cooperative hydrolysis.
    Li X; Kierfeld J; Lipowsky R
    Phys Rev Lett; 2009 Jul; 103(4):048102. PubMed ID: 19659403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymerization of actin filaments coupled with adenosine triphosphate hydrolysis: Brownian dynamics and theoretical analysis.
    Guo K; Xiao W; Qiu D
    J Chem Phys; 2011 Sep; 135(10):105101. PubMed ID: 21932920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-throughput assay shows that DNase-I binds actin monomers and polymers with similar affinity.
    Morrison SS; Dawson JF
    Anal Biochem; 2007 May; 364(2):159-64. PubMed ID: 17397792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.
    Saunders MG; Voth GA
    J Mol Biol; 2011 Oct; 413(1):279-91. PubMed ID: 21856312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.