BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 26646762)

  • 1. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.
    Gopinathan J; Quigley AF; Bhattacharyya A; Padhye R; Kapsa RM; Nayak R; Shanks RA; Houshyar S
    J Biomed Mater Res A; 2016 Apr; 104(4):853-65. PubMed ID: 26646762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect of electrical conductivity and biomolecules on human meniscal cell attachment, growth, and proliferation in poly-ε-caprolactone nanocomposite scaffolds.
    Gopinathan J; Pillai MM; Sahanand KS; Rai BKD; Selvakumar R; Bhattacharyya A
    Biomed Mater; 2017 Oct; 12(6):065001. PubMed ID: 28703122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies.
    Gopinathan J; Pillai MM; Shanthakumari S; Gnanapoongothai S; Dinakar Rai BK; Santosh Sahanand K; Selvakumar R; Bhattacharyya A
    Nanomedicine; 2018 Oct; 14(7):2247-2258. PubMed ID: 30081102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nanocomposite coating and biomolecule functionalization on silk fibroin based conducting 3D braided scaffolds for peripheral nerve tissue engineering.
    Pillai MM; Kumar GS; Houshyar S; Padhye R; Bhattacharyya A
    Nanomedicine; 2020 Feb; 24():102131. PubMed ID: 31778808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of anti-CD31 antibody on electrospun poly(ɛ-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells.
    Zhang M; Wang Z; Wang Z; Feng S; Xu H; Zhao Q; Wang S; Fang J; Qiao M; Kong D
    Colloids Surf B Biointerfaces; 2011 Jun; 85(1):32-9. PubMed ID: 21123036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using PC12 cells to evaluate poly(caprolactone) and collagenous microcarriers for applications in nerve guide fabrication.
    Waddell RL; Marra KG; Collins KL; Leung JT; Doctor JS
    Biotechnol Prog; 2003; 19(6):1767-74. PubMed ID: 14656154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (epsilon-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts.
    Chung TW; Wang YZ; Huang YY; Pan CI; Wang SS
    Artif Organs; 2006 Jan; 30(1):35-41. PubMed ID: 16409396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A collagen-poly(lactic acid-co-ɛ-caprolactone) hybrid scaffold for bladder tissue regeneration.
    Engelhardt EM; Micol LA; Houis S; Wurm FM; Hilborn J; Hubbell JA; Frey P
    Biomaterials; 2011 Jun; 32(16):3969-76. PubMed ID: 21377203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphized cellulose as filler in biocomposites based on poly(ɛ-caprolactone).
    Cocca M; Avolio R; Gentile G; Di Pace E; Errico ME; Avella M
    Carbohydr Polym; 2015 Mar; 118():170-82. PubMed ID: 25542123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.
    Coverdale BDM; Gough JE; Sampson WW; Hoyland JA
    J Biomed Mater Res A; 2017 Oct; 105(10):2865-2874. PubMed ID: 28608414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application.
    Taghavi MA; Rabiee SM; Jahanshahi M; Nasiri F
    Mol Biotechnol; 2019 May; 61(5):345-354. PubMed ID: 30887276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering.
    Sadeghi A; Moztarzadeh F; Aghazadeh Mohandesi J
    Int J Biol Macromol; 2019 Jan; 121():625-632. PubMed ID: 30300697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers.
    Kai D; Tan MJ; Prabhakaran MP; Chan BQY; Liow SS; Ramakrishna S; Loh XJ
    Colloids Surf B Biointerfaces; 2016 Dec; 148():557-565. PubMed ID: 27690245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles.
    Larrañaga A; Diamanti E; Rubio E; Palomares T; Alonso-Varona A; Aldazabal P; Martin FJ; Sarasua JR
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():451-60. PubMed ID: 25063141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.