These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26646814)

  • 1. Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism.
    Vega V; García J; Montero-Moreno JM; Hernando B; Bachmann J; Prida VM; Nielsch K
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28682-92. PubMed ID: 26646814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast fabrication of long-range ordered porous alumina membranes by hard anodization.
    Lee W; Ji R; Gösele U; Nielsch K
    Nat Mater; 2006 Sep; 5(9):741-7. PubMed ID: 16921361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization.
    Schwirn K; Lee W; Hillebrand R; Steinhart M; Nielsch K; Gösele U
    ACS Nano; 2008 Feb; 2(2):302-10. PubMed ID: 19206631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.
    Ali G; Ahmad M; Akhter JI; Maqbool M; Cho SO
    Micron; 2010 Aug; 41(6):560-4. PubMed ID: 20493719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding pore rearrangement during mild to hard transition in bilayered porous anodic alumina membranes.
    Santos A; Montero-Moreno JM; Bachmann J; Nielsch K; Formentín P; Ferré-Borrull J; Pallarès J; Marsal LF
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1925-32. PubMed ID: 21539376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Pore Geometries and Interpore Distances of Anodic Aluminum Oxide Templates via Three-Step Anodization.
    Lim JH; Wiley JB
    J Nanosci Nanotechnol; 2015 Jan; 15(1):633-41. PubMed ID: 26328416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm.
    Sun C; Luo J; Wu L; Zhang J
    ACS Appl Mater Interfaces; 2010 May; 2(5):1299-302. PubMed ID: 20408596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of novel porous anodic alumina membranes by two-step hard anodization.
    Li Y; Ling ZY; Chen SS; Wang JC
    Nanotechnology; 2008 Jun; 19(22):225604. PubMed ID: 21825764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization.
    Cheng C; Ngan AH
    Nanotechnology; 2013 May; 24(21):215602. PubMed ID: 23619572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Ordered Porous Anodic Alumina with Large Diameter Pores Fabricated by an Improved Two-Step Anodization Approach.
    Li X; Ni S; Zhou X
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1725-31. PubMed ID: 26353721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide.
    Han H; Park SJ; Jang JS; Ryu H; Kim KJ; Baik S; Lee W
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3441-8. PubMed ID: 23521656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled hydrothermal pore reduction in anodic alumina membranes.
    Mattia D; Leese H
    Nanoscale; 2014 Nov; 6(22):13952-7. PubMed ID: 25315125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large electrochemical setup for the anodization of aluminum towards highly ordered arrays of cylindrical nanopores.
    Assaud L; Bochmann S; Christiansen S; Bachmann J
    Rev Sci Instrum; 2015 Jul; 86(7):073902. PubMed ID: 26233394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Self-Organized Anodization of Aluminum in Malic Acid Solutions-New Aspects of Anodization in the Organic Acid.
    Zajączkowska L; Siemiaszko D; Norek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures.
    Kim M; Ha YC; Nguyen TN; Choi HY; Kim D
    Nanotechnology; 2013 Dec; 24(50):505304. PubMed ID: 24285551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the anodization voltage on the pore-widening rate of nanoporous anodic alumina.
    Rahman MM; Garcia-Caurel E; Santos A; Marsal LF; Pallarès J; Ferré-Borrull J
    Nanoscale Res Lett; 2012 Aug; 7(1):474. PubMed ID: 22916731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic transport across tailored nanoporous anodic alumina membranes.
    Romero V; Vega V; García J; Prida VM; Hernando B; Benavente J
    J Colloid Interface Sci; 2012 Jun; 376(1):40-6. PubMed ID: 22446147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of anodization conditions of stainless steel on the formation of ordered nanoporous structures with high aspect ratios.
    Osada Y; Yanagishita T
    Nanotechnology; 2023 Aug; 34(46):. PubMed ID: 37567165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Self-Ordered Alumina Films with Large Interpore Distance by Janus Anodization in Citric Acid.
    Ma Y; Wen Y; Li J; Li Y; Zhang Z; Feng C; Sun R
    Sci Rep; 2016 Dec; 6():39165. PubMed ID: 27958365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-ordered, controlled structure nanoporous membranes using constant current anodization.
    Lee K; Tang Y; Ouyang M
    Nano Lett; 2008 Dec; 8(12):4624-9. PubMed ID: 19367888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.