BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26646900)

  • 1. High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice.
    Lu L; Chen X; Sanders D; Qian S; Zhong X
    Epigenetics; 2015; 10(11):1044-53. PubMed ID: 26646900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.
    Wang L; Zhang F; Rode S; Chin KK; Ko EE; Kim J; Iyer VR; Qiao H
    BMC Genomics; 2017 Jul; 18(1):538. PubMed ID: 28716006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interplay of histone lysine 2-hydroxyisobutyrylation and acetylation in Arabidopsis under dark-induced starvation.
    Zheng L; Li C; Ma X; Zhou H; Liu Y; Wang P; Yang H; Tamada Y; Huang J; Wang C; Hu Z; Wang X; Wang G; Li H; Hu J; Liu X; Zhou C; Zhang Y
    Nucleic Acids Res; 2021 Jul; 49(13):7347-7360. PubMed ID: 34165567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.
    Mahrez W; Arellano MS; Moreno-Romero J; Nakamura M; Shu H; Nanni P; Köhler C; Gruissem W; Hennig L
    Plant Physiol; 2016 Mar; 170(3):1566-77. PubMed ID: 26764380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development.
    Tian L; Fong MP; Wang JJ; Wei NE; Jiang H; Doerge RW; Chen ZJ
    Genetics; 2005 Jan; 169(1):337-45. PubMed ID: 15371352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.
    Gómez-Porras JL; Riaño-Pachón DM; Dreyer I; Mayer JE; Mueller-Roeber B
    BMC Genomics; 2007 Aug; 8():260. PubMed ID: 17672917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture and transcriptional regulation.
    Tripathi AK; Singh K; Pareek A; Singla-Pareek SL
    BMC Plant Biol; 2015 Feb; 15():42. PubMed ID: 25849155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution pattern of histone marks potentially determines their roles in transcription and RNA processing in rice.
    Hu Y; Lai Y; Chen X; Zhou DX; Zhao Y
    J Plant Physiol; 2020 Jun; 249():153167. PubMed ID: 32353606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Genome-wide identification, classification and expression analyses of SET domain gene family in Arabidopsis and rice].
    Zhang LS; Ma CR; Ji Q; Wang YF
    Yi Chuan; 2009 Feb; 31(2):186-98. PubMed ID: 19273428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling.
    Zhang K; Xu W; Wang C; Yi X; Zhang W; Su Z
    Plant J; 2017 Jan; 89(2):264-277. PubMed ID: 27643852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and characterization of microRNAs from rice.
    Sunkar R; Girke T; Jain PK; Zhu JK
    Plant Cell; 2005 May; 17(5):1397-411. PubMed ID: 15805478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana.
    Kim JM; To TK; Ishida J; Morosawa T; Kawashima M; Matsui A; Toyoda T; Kimura H; Shinozaki K; Seki M
    Plant Cell Physiol; 2008 Oct; 49(10):1580-8. PubMed ID: 18779215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence.
    Lu Y; Xu Q; Liu Y; Yu Y; Cheng ZY; Zhao Y; Zhou DX
    Genome Biol; 2018 Sep; 19(1):144. PubMed ID: 30253806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice.
    Liu S; Xue C; Fang Y; Chen G; Peng X; Zhou Y; Chen C; Liu G; Gu M; Wang K; Zhang W; Wu Y; Gong Z
    Mol Cell Proteomics; 2018 Oct; 17(10):1922-1936. PubMed ID: 30021883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice.
    Li M; Xu W; Yang W; Kong Z; Xue Y
    Plant Physiol; 2007 Aug; 144(4):1797-812. PubMed ID: 17556504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling.
    Zhang F; Qi B; Wang L; Zhao B; Rode S; Riggan ND; Ecker JR; Qiao H
    Nat Commun; 2016 Oct; 7():13018. PubMed ID: 27694846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue.
    Liu HL; Xu YY; Xu ZH; Chong K
    Dev Genes Evol; 2007 Sep; 217(9):629-37. PubMed ID: 17676337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone modifications and dynamic regulation of genome accessibility in plants.
    Pfluger J; Wagner D
    Curr Opin Plant Biol; 2007 Dec; 10(6):645-52. PubMed ID: 17884714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis.
    Jiao Y; Ma L; Strickland E; Deng XW
    Plant Cell; 2005 Dec; 17(12):3239-56. PubMed ID: 16284311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
    Li X; Duan X; Jiang H; Sun Y; Tang Y; Yuan Z; Guo J; Liang W; Chen L; Yin J; Ma H; Wang J; Zhang D
    Plant Physiol; 2006 Aug; 141(4):1167-84. PubMed ID: 16896230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.