BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26647208)

  • 1. Quantification of nanoparticle release from polymer nanocomposite coatings due to environmental stressing.
    Kim YS; Davis R; Uddin N; Nyden M; Rabb SA
    J Occup Environ Hyg; 2016; 13(4):303-13. PubMed ID: 26647208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-object Release During Machining of Polymer-Based Nanocomposites Depends on Process Factors and the Type of Nanofiller.
    Ding Y; Wohlleben W; Boland M; Vilsmeier K; Riediker M
    Ann Work Expo Health; 2017 Nov; 61(9):1132-1144. PubMed ID: 29136418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
    Davis R; Li YC; Gervasio M; Luu J; Kim YS
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6082-92. PubMed ID: 25723711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle networks reduce the flammability of polymer nanocomposites.
    Kashiwagi T; Du F; Douglas JF; Winey KI; Harris RH; Shields JR
    Nat Mater; 2005 Dec; 4(12):928-33. PubMed ID: 16267575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid methodology to screen flame retardants in upholstered furniture for compliance with new California labeling law (SB 1019).
    Petreas M; Gill R; Takaku-Pugh S; Lytle E; Parry E; Wang M; Quinn J; Park JS
    Chemosphere; 2016 Jun; 152():353-9. PubMed ID: 26991383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of exposure and toxicological aspects of carbon nanotubes, and as additives to fire retardants in polymers.
    Christou A; Stec AA; Ahmed W; Aschberger K; Amenta V
    Crit Rev Toxicol; 2016; 46(1):74-95. PubMed ID: 26482549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques.
    Abdolahpur Monikh F; Chupani L; Vijver MG; Vancová M; Peijnenburg WJGM
    Sci Total Environ; 2019 Apr; 660():1283-1293. PubMed ID: 30743923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Degradation and Nanoparticle Release of a Commercial Nanosilica/Polyurethane Coating Under UV Exposure.
    Jacobs DS; Huang SR; Cheng YL; Rabb SA; Gorham JM; Krommenhoek PJ; Yu LL; Nguyen T; Sung L
    J Coat Technol Res; 2016 Sep; 13(5):735-751. PubMed ID: 27818724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test.
    Jiang L; Kondo A; Shigeta M; Endoh S; Uejima M; Ogura I; Naito M
    J Occup Environ Hyg; 2014; 11(10):658-64. PubMed ID: 24628695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy.
    Luo P; Morrison I; Dudkiewicz A; Tiede K; Boyes E; O'Toole P; Park S; Boxall AB
    J Microsc; 2013 Apr; 250(1):32-41. PubMed ID: 23410110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.
    Xia Y; Larock RC
    Macromol Rapid Commun; 2011 Sep; 32(17):1331-7. PubMed ID: 25867899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid growing clay coatings to reduce the fire threat of furniture.
    Kim YS; Li YC; Pitts WM; Werrel M; Davis RD
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2146-52. PubMed ID: 24422757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments.
    Raynor PC; Cebula JI; Spangenberger JS; Olson BA; Dasch JM; D'Arcy JB
    J Occup Environ Hyg; 2012; 9(1):1-13. PubMed ID: 22168254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.
    Tiede K; Hassellöv M; Breitbarth E; Chaudhry Q; Boxall AB
    J Chromatogr A; 2009 Jan; 1216(3):503-9. PubMed ID: 18805541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effective Young's modulus of carbon nanotubes in composites.
    Deng L; Eichhorn SJ; Kao CC; Young RJ
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):433-40. PubMed ID: 21218790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of nanoparticle dispersions for in-vitro toxicity testing.
    Vippola M; Falck GC; Lindberg HK; Suhonen S; Vanhala E; Norppa H; Savolainen K; Tossavainen A; Tuomi T
    Hum Exp Toxicol; 2009 Jun; 28(6-7):377-85. PubMed ID: 19755449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems.
    Luo P; Roca A; Tiede K; Privett K; Jiang J; Pinkstone J; Ma G; Veinot J; Boxall A
    J Environ Sci (China); 2018 Feb; 64():62-71. PubMed ID: 29478662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.
    Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K
    Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.
    Mitrano DM; Motellier S; Clavaguera S; Nowack B
    Environ Int; 2015 Apr; 77():132-47. PubMed ID: 25705000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.