BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2664761)

  • 1. Can a simple function for the dielectric response model electrostatic effects in globular proteins?
    Fersht AR; Sternberg MJ
    Protein Eng; 1989 May; 2(7):527-30. PubMed ID: 2664761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of electrostatic effects of engineering of protein charges.
    Sternberg MJ; Hayes FR; Russell AJ; Thomas PG; Fersht AR
    Nature; 1987 Nov 5-11; 330(6143):86-8. PubMed ID: 3313059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of charge-charge interactions in proteins.
    Gilson MK; Honig BH
    Proteins; 1988; 3(1):32-52. PubMed ID: 3287370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of electrostatic fluctuations in subtilisin active site.
    Lopoukhov LV; Sitnitsky AE; Fedotov VD
    J Biomol Struct Dyn; 1995 Feb; 12(4):767-84. PubMed ID: 7779299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An empirical model for electrostatic interactions in proteins incorporating multiple geometry-dependent dielectric constants.
    Wisz MS; Hellinga HW
    Proteins; 2003 May; 51(3):360-77. PubMed ID: 12696048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of dielectric response models for simulating electrostatic effects in proteins.
    Mehler EL
    Protein Eng; 1990 Apr; 3(5):415-7. PubMed ID: 2349211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cubic equation governing the outer-region dielectric constant of globular proteins.
    Park H; Jeon YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021916. PubMed ID: 17358376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic interactions in globular proteins. Different dielectric models applied to the packing of alpha-helices.
    Rogers NK; Sternberg MJ
    J Mol Biol; 1984 Apr; 174(3):527-42. PubMed ID: 6716485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using DelPhi to compute electrostatic potentials and assess their contribution to interactions.
    Oron A; Wolfson H; Gunasekaran K; Nussinov R
    Curr Protoc Bioinformatics; 2003 Aug; Chapter 8():Unit 8.4. PubMed ID: 18428711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved continuum electrostatic modelling in proteins, with comparison to experiment.
    Warwicker J
    J Mol Biol; 1994 Feb; 236(3):887-903. PubMed ID: 7906738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering.
    Russell AJ; Thomas PG; Fersht AR
    J Mol Biol; 1987 Feb; 193(4):803-13. PubMed ID: 3302273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the electrostatic potential field of plastocyanin.
    Durell SR; Labanowski JK; Gross EL
    Arch Biochem Biophys; 1990 Mar; 277(2):241-54. PubMed ID: 2310192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution.
    Simonson T; Perahia D
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1082-6. PubMed ID: 7862638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im+H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants.
    Plou FJ; Kowlessur D; Malthouse JP; Mellor GW; Hartshorn MJ; Pinitglang S; Patel H; Topham CM; Thomas EW; Verma C; Brocklehurst K
    J Mol Biol; 1996 Apr; 257(5):1088-111. PubMed ID: 8632470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations.
    Tjong H; Zhou HX
    J Chem Phys; 2006 Nov; 125(20):206101. PubMed ID: 17144745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes.
    Nymeyer H; Zhou HX
    Biophys J; 2008 Feb; 94(4):1185-93. PubMed ID: 17951302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics effects on protein electrostatics.
    Wendoloski JJ; Matthew JB
    Proteins; 1989; 5(4):313-21. PubMed ID: 2552435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of 1H NMR spectroscopy and computer simulations To analyze histidine pKa changes in a protein tyrosine phosphatase: experimental and theoretical determination of electrostatic properties in a small protein.
    Tishmack PA; Bashford D; Harms E; Van Etten RL
    Biochemistry; 1997 Sep; 36(39):11984-94. PubMed ID: 9305993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.