These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 26647719)
1. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Chuah YJ; Koh YT; Lim K; Menon NV; Wu Y; Kang Y Sci Rep; 2015 Dec; 5():18162. PubMed ID: 26647719 [TBL] [Abstract][Full Text] [Related]
2. Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture. Chuah YJ; Heng ZT; Tan JS; Tay LM; Lim CS; Kang Y; Wang DA Colloids Surf B Biointerfaces; 2020 Jul; 191():110995. PubMed ID: 32276214 [TBL] [Abstract][Full Text] [Related]
3. Polydopamine-collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining long-term culture of L929 fibroblasts and tendon stem cells. Li Q; Sun L; Zhang L; Xu Z; Kang Y; Xue P J Biomed Mater Res A; 2018 Feb; 106(2):408-418. PubMed ID: 28971550 [TBL] [Abstract][Full Text] [Related]
4. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Fu J; Chuah YJ; Ang WT; Zheng N; Wang DA Biomater Sci; 2017 May; 5(6):1156-1173. PubMed ID: 28509913 [TBL] [Abstract][Full Text] [Related]
5. An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy. Razavi M; Thakor AS J Mater Sci Mater Med; 2018 May; 29(5):54. PubMed ID: 29725867 [TBL] [Abstract][Full Text] [Related]
6. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]
7. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Chuah YJ; Kuddannaya S; Lee MH; Zhang Y; Kang Y Biomater Sci; 2015 Feb; 3(2):383-90. PubMed ID: 26218129 [TBL] [Abstract][Full Text] [Related]
8. Uniform polydimethylsiloxane beads coated with polydopamine and their potential biomedical applications. Jun DR; Moon SK; Choi SW Colloids Surf B Biointerfaces; 2014 Sep; 121():395-9. PubMed ID: 24993068 [TBL] [Abstract][Full Text] [Related]
9. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. Kuddannaya S; Chuah YJ; Lee MH; Menon NV; Kang Y; Zhang Y ACS Appl Mater Interfaces; 2013 Oct; 5(19):9777-84. PubMed ID: 24015724 [TBL] [Abstract][Full Text] [Related]
10. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104 [TBL] [Abstract][Full Text] [Related]
11. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. Peterson SL; McDonald A; Gourley PL; Sasaki DY J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867 [TBL] [Abstract][Full Text] [Related]
12. Mussel-Inspired Polydopamine Coating: A General Strategy To Enhance Osteogenic Differentiation and Osseointegration for Diverse Implants. Wang H; Lin C; Zhang X; Lin K; Wang X; Shen SG ACS Appl Mater Interfaces; 2019 Feb; 11(7):7615-7625. PubMed ID: 30689334 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Biocompatibility and Differentiation Capacity of Mesenchymal Stem Cells on Poly(dimethylsiloxane) by Topographically Patterned Dopamine. Hung HS; Yu AY; Hsieh SC; Kung ML; Huang HY; Fu RH; Yeh CA; Hsu SH ACS Appl Mater Interfaces; 2020 Oct; 12(40):44393-44406. PubMed ID: 32697572 [TBL] [Abstract][Full Text] [Related]
14. Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermoresponsive PDMS surfaces grafted with PNIPAAm. Shi D; Ma D; Dong F; Zong C; Liu L; Shen D; Yuan W; Tong X; Chen H; Wang J Biosci Rep; 2009 Dec; 30(3):149-58. PubMed ID: 19445653 [TBL] [Abstract][Full Text] [Related]
15. Combinatorial effect of substratum properties on mesenchymal stem cell sheet engineering and subsequent multi-lineage differentiation. Chuah YJ; Zhang Y; Wu Y; Menon NV; Goh GH; Lee AC; Chan V; Zhang Y; Kang Y Acta Biomater; 2015 Sep; 23():52-62. PubMed ID: 26026305 [TBL] [Abstract][Full Text] [Related]
16. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture. Wang L; Yu L; Grist S; Cheung KC; Chen DDY J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477 [TBL] [Abstract][Full Text] [Related]
17. Surface Modification of PDMS-Based Microfluidic Devices with Collagen Using Polydopamine as a Spacer to Enhance Primary Human Bronchial Epithelial Cell Adhesion. Dabaghi M; Shahriari S; Saraei N; Da K; Chandiramohan A; Selvaganapathy PR; Hirota JA Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33530564 [TBL] [Abstract][Full Text] [Related]
18. Improved cell adhesion under shear stress in PDMS microfluidic devices. Siddique A; Meckel T; Stark RW; Narayan S Colloids Surf B Biointerfaces; 2017 Feb; 150():456-464. PubMed ID: 27847226 [TBL] [Abstract][Full Text] [Related]
19. A durable and biocompatible ascorbic acid-based covalent coating method of polydimethylsiloxane for dynamic cell culture. Leivo J; Virjula S; Vanhatupa S; Kartasalo K; Kreutzer J; Miettinen S; Kallio P J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747398 [TBL] [Abstract][Full Text] [Related]
20. Osteogenic differentiation on DLC-PDMS-h surface. Soininen A; Kaivosoja E; Sillat T; Virtanen S; Konttinen YT; Tiainen VM J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1462-72. PubMed ID: 24574187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]