BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26648082)

  • 1. Targeting glycolysis in the malaria parasite Plasmodium falciparum.
    van Niekerk DD; Penkler GP; du Toit F; Snoep JL
    FEBS J; 2016 Feb; 283(4):634-46. PubMed ID: 26648082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum.
    Penkler G; du Toit F; Adams W; Rautenbach M; Palm DC; van Niekerk DD; Snoep JL
    FEBS J; 2015 Apr; 282(8):1481-511. PubMed ID: 25693925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed kinetic model of glycolysis in Plasmodium falciparum-infected red blood cells for antimalarial drug target identification.
    van Niekerk DD; du Toit F; Green K; Palm D; Snoep JL
    J Biol Chem; 2023 Sep; 299(9):105111. PubMed ID: 37517694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum.
    Dumont L; Richardson MB; van der Peet P; Marapana DS; Triglia T; Dixon MWA; Cowman AF; Williams SJ; Tilley L; McConville MJ; Cobbold SA
    mBio; 2019 Dec; 10(6):. PubMed ID: 31822583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides.
    Fisher GM; Cobbold SA; Jezewski A; Carpenter EF; Arnold M; Cowell AN; Tjhin ET; Saliba KJ; Skinner-Adams TS; Lee MCS; Odom John A; Winzeler EA; McConville MJ; Poulsen SA; Andrews KT
    mBio; 2020 Dec; 11(6):. PubMed ID: 33293381
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative.
    Saliba KJ; Krishna S; Kirk K
    FEBS Lett; 2004 Jul; 570(1-3):93-6. PubMed ID: 15251446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From steady-state to synchronized yeast glycolytic oscillations II: model validation.
    du Preez FB; van Niekerk DD; Snoep JL
    FEBS J; 2012 Aug; 279(16):2823-36. PubMed ID: 22686585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibitory effect of 2-halo derivatives of D-glucose on glycolysis and on the proliferation of the human malaria parasite Plasmodium falciparum.
    van Schalkwyk DA; Priebe W; Saliba KJ
    J Pharmacol Exp Ther; 2008 Nov; 327(2):511-7. PubMed ID: 18713952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From steady-state to synchronized yeast glycolytic oscillations I: model construction.
    du Preez FB; van Niekerk DD; Kooi B; Rohwer JM; Snoep JL
    FEBS J; 2012 Aug; 279(16):2810-22. PubMed ID: 22712534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum.
    Ngansop F; Li H; Zolkiewska A; Zolkiewski M
    Biochem Biophys Res Commun; 2013 Sep; 439(2):191-5. PubMed ID: 23994135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells.
    Gustavsson AK; van Niekerk DD; Adiels CB; Kooi B; Goksör M; Snoep JL
    FEBS J; 2014 Jun; 281(12):2784-93. PubMed ID: 24751218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities.
    Mehta M; Sonawat HM; Sharma S
    J Vector Borne Dis; 2006 Sep; 43(3):95-103. PubMed ID: 17024857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of transport and phosphorylation of glucose in cancer cells.
    Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Moreno-Sánchez R
    J Cell Physiol; 2009 Dec; 221(3):552-9. PubMed ID: 19681047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pairwise chemical genetic screen identifies new inhibitors of glucose transport.
    Ulanovskaya OA; Cui J; Kron SJ; Kozmin SA
    Chem Biol; 2011 Feb; 18(2):222-30. PubMed ID: 21338919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis.
    Tjhin ET; Staines HM; van Schalkwyk DA; Krishna S; Saliba KJ
    FEBS Lett; 2013 Oct; 587(19):3182-7. PubMed ID: 23954294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic enzymes as potential drug targets in Plasmodium falciparum.
    Subbayya IN; Ray SS; Balaram P; Balaram H
    Indian J Med Res; 1997 Aug; 106():79-94. PubMed ID: 9291679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malaria, metabolism and mathematical models.
    Gemayel R
    FEBS J; 2017 Aug; 284(16):2553-2555. PubMed ID: 28834340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes.
    Mony BM; Mehta M; Jarori GK; Sharma S
    Int J Parasitol; 2009 Nov; 39(13):1441-53. PubMed ID: 19505469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite.
    Chua CS; Low H; Lehming N; Sim TS
    Int J Biochem Cell Biol; 2012 Jan; 44(1):233-45. PubMed ID: 22100910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.