BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 26648124)

  • 1. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.
    Bernier M; Luo Y; Nwokelo KC; Goodwin M; Dreher SJ; Zhang P; Parthun MR; Fondufe-Mittendorf Y; Ottesen JJ; Poirier MG
    Nat Commun; 2015 Dec; 6():10152. PubMed ID: 26648124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes.
    Burge NL; Thuma JL; Hong ZZ; Jamison KB; Ottesen JJ; Poirier MG
    Biochemistry; 2022 Apr; 61(8):625-638. PubMed ID: 35377618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin.
    Mishra LN; Hayes JJ
    J Biol Chem; 2018 Dec; 293(50):19191-19200. PubMed ID: 30373774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core.
    Fenley AT; Anandakrishnan R; Kidane YH; Onufriev AV
    Epigenetics Chromatin; 2018 Mar; 11(1):11. PubMed ID: 29548294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone fold modifications control nucleosome unwrapping and disassembly.
    Simon M; North JA; Shimko JC; Forties RA; Ferdinand MB; Manohar M; Zhang M; Fishel R; Ottesen JJ; Poirier MG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12711-6. PubMed ID: 21768347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone core phosphorylation regulates DNA accessibility.
    Brehove M; Wang T; North J; Luo Y; Dreher SJ; Shimko JC; Ottesen JJ; Luger K; Poirier MG
    J Biol Chem; 2015 Sep; 290(37):22612-21. PubMed ID: 26175159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dynamics of nucleosome mediated by acetylations at H3K56 and H3K115,122.
    Rajagopalan M; Balasubramanian S; Ioshikhes I; Ramaswamy A
    Eur Biophys J; 2017 Jul; 46(5):471-484. PubMed ID: 27933430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic placement of the linker histone H1 associated with nucleosome arrangement and gene transcription in early Drosophila embryonic development.
    Hu J; Gu L; Ye Y; Zheng M; Xu Z; Lin J; Du Y; Tian M; Luo L; Wang B; Zhang X; Weng Z; Jiang C
    Cell Death Dis; 2018 Jul; 9(7):765. PubMed ID: 29988149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome Dynamics during Transcription Elongation.
    Huynh MT; Yadav SP; Reese JC; Lee TH
    ACS Chem Biol; 2020 Dec; 15(12):3133-3142. PubMed ID: 33263994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.
    Ura K; Kurumizaka H; Dimitrov S; Almouzni G; Wolffe AP
    EMBO J; 1997 Apr; 16(8):2096-107. PubMed ID: 9155035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Investigations on Histone H2A-H2B Dynamics in the Nucleosome.
    Lee J; Lee TH
    Biochemistry; 2017 Feb; 56(7):977-985. PubMed ID: 28128545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility.
    Riedmann C; Fondufe-Mittendorf YN
    Sci Rep; 2016 Sep; 6():33186. PubMed ID: 27624769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome Clutches are Regulated by Chromatin Internal Parameters.
    Portillo-Ledesma S; Tsao LH; Wagley M; Lakadamyali M; Cosma MP; Schlick T
    J Mol Biol; 2021 Mar; 433(6):166701. PubMed ID: 33181171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human SWI/SNF nucleosome remodeling activity is partially inhibited by linker histone H1.
    Hill DA; Imbalzano AN
    Biochemistry; 2000 Sep; 39(38):11649-56. PubMed ID: 10995232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone acetylation reduces H1-mediated nucleosome interactions during chromatin assembly.
    Perry CA; Annunziato AT
    Exp Cell Res; 1991 Oct; 196(2):337-45. PubMed ID: 1893943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations reveal how H3K56 acetylation impacts nucleosome structure to promote DNA exposure for lesion sensing.
    Fu I; Geacintov NE; Broyde S
    DNA Repair (Amst); 2021 Nov; 107():103201. PubMed ID: 34399316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.