BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26648525)

  • 1. Zebrafish as a model system for characterization of nanoparticles against cancer.
    Evensen L; Johansen PL; Koster G; Zhu K; Herfindal L; Speth M; Fenaroli F; Hildahl J; Bagherifam S; Tulotta C; Prasmickaite L; Mælandsmo GM; Snaar-Jagalska E; Griffiths G
    Nanoscale; 2016 Jan; 8(2):862-77. PubMed ID: 26648525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors.
    Adumeau L; Genevois C; Roudier L; Schatz C; Couillaud F; Mornet S
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1587-1596. PubMed ID: 28179102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical micromanipulation of nanoparticles and cells inside living zebrafish.
    Johansen PL; Fenaroli F; Evensen L; Griffiths G; Koster G
    Nat Commun; 2016 Mar; 7():10974. PubMed ID: 26996121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted polymeric therapeutic nanoparticles: Design and interactions with hepatocellular carcinoma.
    Wang Q; Sun Y; Zhang Z; Duan Y
    Biomaterials; 2015 Jul; 56():229-40. PubMed ID: 25934295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment.
    Fenaroli F; Westmoreland D; Benjaminsen J; Kolstad T; Skjeldal FM; Meijer AH; van der Vaart M; Ulanova L; Roos N; Nyström B; Hildahl J; Griffiths G
    ACS Nano; 2014 Jul; 8(7):7014-26. PubMed ID: 24945994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo.
    Sieber S; Grossen P; Uhl P; Detampel P; Mier W; Witzigmann D; Huwyler J
    Nanomedicine; 2019 Apr; 17():82-93. PubMed ID: 30659929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.
    Aravind A; Jeyamohan P; Nair R; Veeranarayanan S; Nagaoka Y; Yoshida Y; Maekawa T; Kumar DS
    Biotechnol Bioeng; 2012 Nov; 109(11):2920-31. PubMed ID: 22615073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of functional polymer-modified nanoparticles for protein sensing by surface-assisted laser desorption/ionization mass spectrometry coupled with HgTe nanomatrices.
    Chang HY; Huang MF; Hsu CL; Huang CC; Chang HT
    Colloids Surf B Biointerfaces; 2015 Jun; 130():157-63. PubMed ID: 25896538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of complexes of liposomes with gold nanoparticles.
    Kojima C; Hirano Y; Yuba E; Harada A; Kono K
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):246-52. PubMed ID: 18723331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells.
    Pozzi D; Colapicchioni V; Caracciolo G; Piovesana S; Capriotti AL; Palchetti S; De Grossi S; Riccioli A; Amenitsch H; Laganà A
    Nanoscale; 2014 Mar; 6(5):2782-92. PubMed ID: 24463404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEGylation of ORMOSIL nanoparticles differently modulates the in vitro toxicity toward human lung cells.
    Moret F; Selvestrel F; Lubian E; Mognato M; Celotti L; Mancin F; Reddi E
    Arch Toxicol; 2015 Apr; 89(4):607-20. PubMed ID: 24888373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.
    Huang WC; Burnouf PA; Su YC; Chen BM; Chuang KH; Lee CW; Wei PK; Cheng TL; Roffler SR
    ACS Nano; 2016 Jan; 10(1):648-62. PubMed ID: 26741147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dexamethasone-loaded block copolymer nanoparticles induce leukemia cell death and enhance therapeutic efficacy: a novel application in pediatric nanomedicine.
    Krishnan V; Xu X; Barwe SP; Yang X; Czymmek K; Waldman SA; Mason RW; Jia X; Rajasekaran AK
    Mol Pharm; 2013 Jun; 10(6):2199-210. PubMed ID: 23194373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the targeting capabilities of the Paclitaxel-loaded pluronic nanoparticles with a glycol chitosan/heparin composite.
    Yuk SH; Oh KS; Cho SH; Kim SY; Oh S; Lee JH; Kim K; Kwon IC
    Mol Pharm; 2012 Feb; 9(2):230-6. PubMed ID: 22149139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of poly(ethylene glycol) grafting density on the tumor targeting efficacy of nanoparticles with ligand modification.
    Zhang S; Tang C; Yin C
    Drug Deliv; 2015 Feb; 22(2):182-90. PubMed ID: 24215373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the in vivo accumulation of nanoparticles in tumor based on in vitro macrophage uptake and circulation in zebrafish.
    Chang H; Yhee JY; Jang GH; You DG; Ryu JH; Choi Y; Na JH; Park JH; Lee KH; Choi K; Kim K; Kwon IC
    J Control Release; 2016 Dec; 244(Pt B):205-213. PubMed ID: 27435681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy.
    Ma Y; Tong S; Bao G; Gao C; Dai Z
    Biomaterials; 2013 Oct; 34(31):7706-14. PubMed ID: 23871538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeling nanoparticles: Dye leakage and altered cellular uptake.
    Snipstad S; Hak S; Baghirov H; Sulheim E; Mørch Ý; Lélu S; von Haartman E; Bäck M; Nilsson KPR; Klymchenko AS; de Lange Davies C; Åslund AKO
    Cytometry A; 2017 Aug; 91(8):760-766. PubMed ID: 27077940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles.
    Tan YF; Chandrasekharan P; Maity D; Yong CX; Chuang KH; Zhao Y; Wang S; Ding J; Feng SS
    Biomaterials; 2011 Apr; 32(11):2969-78. PubMed ID: 21257200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish.
    Rabanel JM; Faivre J; Zaouter C; Patten SA; Banquy X; Ramassamy C
    Biomaterials; 2021 Oct; 277():121085. PubMed ID: 34461457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.