These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26648572)

  • 1. The proteome targets of intracellular targeting antimicrobial peptides.
    Shah P; Hsiao FS; Ho YH; Chen CS
    Proteomics; 2016 Apr; 16(8):1225-37. PubMed ID: 26648572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematical Screening of Intracellular Protein Targets of Polyphemusin-I Using
    Shah P; Chen CS
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.
    Ho YH; Shah P; Chen YW; Chen CS
    Mol Cell Proteomics; 2016 Jun; 15(6):1837-47. PubMed ID: 26902206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Api88 Binding Partners in Escherichia coli Using a Photoaffinity-Cross-Link Strategy and Label-Free Quantification.
    Volke D; Krizsan A; Berthold N; Knappe D; Hoffmann R
    J Proteome Res; 2015 Aug; 14(8):3274-83. PubMed ID: 26196380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Targeting Mechanisms by Antimicrobial Peptides.
    Le CF; Fang CM; Sekaran SD
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28167546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Screening of Penetratin's Protein Targets by Yeast Proteome Microarrays.
    Shah P; Chen CS
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli.
    Marcellini L; Borro M; Gentile G; Rinaldi AC; Stella L; Aimola P; Barra D; Mangoni ML
    FEBS J; 2009 Oct; 276(19):5647-64. PubMed ID: 19725877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria.
    Scocchi M; Mardirossian M; Runti G; Benincasa M
    Curr Top Med Chem; 2016; 16(1):76-88. PubMed ID: 26139115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial peptides (AMPs): peptide structure and mode of action.
    Park Y; Hahm KS
    J Biochem Mol Biol; 2005 Sep; 38(5):507-16. PubMed ID: 16202228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.
    Taniguchi M; Ochiai A; Kondo H; Fukuda S; Ishiyama Y; Saitoh E; Kato T; Tanaka T
    J Biosci Bioeng; 2016 May; 121(5):591-8. PubMed ID: 26472128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities.
    Luo Y; Song Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides.
    Schäfer AB; Wenzel M
    Front Cell Infect Microbiol; 2020; 10():540898. PubMed ID: 33194788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23.
    Roversi D; Luca V; Aureli S; Park Y; Mangoni ML; Stella L
    ACS Chem Biol; 2014 Sep; 9(9):2003-7. PubMed ID: 25058470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity.
    Lorenzon EN; Piccoli JP; Santos-Filho NA; Cilli EM
    Protein Pept Lett; 2019; 26(2):98-107. PubMed ID: 30605048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets.
    Cardoso MH; Meneguetti BT; Costa BO; Buccini DF; Oshiro KGN; Preza SLE; Carvalho CME; Migliolo L; Franco OL
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31581426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.
    Tu YH; Ho YH; Chuang YC; Chen PC; Chen CS
    PLoS One; 2011; 6(12):e28197. PubMed ID: 22164243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775.
    Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S
    Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical characterization of antimicrobial peptides activity: from in vitro to ex vivo techniques.
    Aquila M; Benedusi M; Dell'Orco D
    Curr Protein Pept Sci; 2013 Nov; 14(7):607-16. PubMed ID: 24106959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between antimicrobial peptides and mycobacteria.
    Gutsmann T
    Biochim Biophys Acta; 2016 May; 1858(5):1034-43. PubMed ID: 26851776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.