These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26648850)
1. Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview. Atzori M; Müller H Front Syst Neurosci; 2015; 9():162. PubMed ID: 26648850 [TBL] [Abstract][Full Text] [Related]
2. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Atzori M; Gijsberts A; Castellini C; Caputo B; Hager AG; Elsig S; Giatsidis G; Bassetto F; Müller H Sci Data; 2014; 1():140053. PubMed ID: 25977804 [TBL] [Abstract][Full Text] [Related]
3. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses. Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991 [TBL] [Abstract][Full Text] [Related]
4. Effects of prosthesis use on the capability to control myoelectric robotic prosthetic hands. Atzori M; Hager AG; Elsig S; Giatsidis G; Bassetto F; Muller H Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3456-9. PubMed ID: 26737036 [TBL] [Abstract][Full Text] [Related]
5. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models. Gopal P; Gesta A; Mohebbi A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058 [TBL] [Abstract][Full Text] [Related]
6. Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics. Cognolato M; Gijsberts A; Gregori V; Saetta G; Giacomino K; Hager AM; Gigli A; Faccio D; Tiengo C; Bassetto F; Caputo B; Brugger P; Atzori M; Müller H Sci Data; 2020 Feb; 7(1):43. PubMed ID: 32041965 [TBL] [Abstract][Full Text] [Related]
7. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106 [TBL] [Abstract][Full Text] [Related]
8. Abstract and proportional myoelectric control for multi-fingered hand prostheses. Pistohl T; Cipriani C; Jackson A; Nazarpour K Ann Biomed Eng; 2013 Dec; 41(12):2687-98. PubMed ID: 23934195 [TBL] [Abstract][Full Text] [Related]
9. The development of a myoelectric training tool for above-elbow amputees. Dawson MR; Fahimi F; Carey JP Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905 [TBL] [Abstract][Full Text] [Related]
10. Adapting proportional myoelectric-controlled interfaces for prosthetic hands. Pistohl T; Cipriani C; Jackson A; Nazarpour K Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6195-8. PubMed ID: 24111155 [TBL] [Abstract][Full Text] [Related]
11. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
12. Natural control capabilities of robotic hands by hand amputated subjects. Atzori M; Gijsberts A; Caputo B; Muller H Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4362-5. PubMed ID: 25570958 [TBL] [Abstract][Full Text] [Related]
13. Myoelectric training systems. Dawson MR; Carey JP; Fahimi F Expert Rev Med Devices; 2011 Sep; 8(5):581-9. PubMed ID: 22026623 [TBL] [Abstract][Full Text] [Related]
14. The Ninapro database: A resource for sEMG naturally controlled robotic hand prosthetics. Atzori M; Muller H Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7151-4. PubMed ID: 26737941 [TBL] [Abstract][Full Text] [Related]
15. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses. Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035 [No Abstract] [Full Text] [Related]
16. Applying Health Utility Outcome Measures and Quality-Adjusted Life-Years to Compare Hand Allotransplantation and Myoelectric Prostheses for Upper Extremity Amputations. Efanov JI; Izadpanah A; Bou-Merhi J; Lin SJ; Danino MA Plast Reconstr Surg; 2022 Mar; 149(3):465e-474e. PubMed ID: 35196684 [TBL] [Abstract][Full Text] [Related]
17. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. Cipriani C; Antfolk C; Controzzi M; Lundborg G; Rosen B; Carrozza MC; Sebelius F IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):260-70. PubMed ID: 21292599 [TBL] [Abstract][Full Text] [Related]
18. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Matrone GC; Cipriani C; Carrozza MC; Magenes G J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. Young AJ; Smith LH; Rouse EJ; Hargrove LJ J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948 [TBL] [Abstract][Full Text] [Related]
20. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study. Jarrassé N; de Montalivet E; Richer F; Nicol C; Touillet A; Martinet N; Paysant J; de Graaf JB Front Bioeng Biotechnol; 2018; 6():164. PubMed ID: 30555823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]