These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26648936)

  • 21. Toll-Like Receptor Signaling and Its Inducible Proteins.
    Satoh T; Akira S
    Microbiol Spectr; 2016 Dec; 4(6):. PubMed ID: 28084212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways.
    Chen Y; Li H; Li M; Niu S; Wang J; Shao H; Li T; Wang H
    J Ethnopharmacol; 2017 Mar; 200():165-173. PubMed ID: 28232127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia.
    Downer EJ; Johnston DG; Lynch MA
    Mol Cell Neurosci; 2013 Sep; 56():148-58. PubMed ID: 23659921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp.
    Li C; Wang S; He J
    Front Immunol; 2019; 10():1785. PubMed ID: 31417561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway.
    Lang T; Lo C; Skinner N; Locarnini S; Visvanathan K; Mansell A
    J Hepatol; 2011 Oct; 55(4):762-9. PubMed ID: 21334391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus.
    Gomes MT; Campos PC; Pereira Gde S; Bartholomeu DC; Splitter G; Oliveira SC
    J Leukoc Biol; 2016 May; 99(5):771-80. PubMed ID: 26578650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Female sex hormones modulate Porphyromonas gingivalis lipopolysaccharide-induced Toll-like receptor signaling in primary human monocytes.
    Jitprasertwong P; Charadram N; Kumphune S; Pongcharoen S; Sirisinha S
    J Periodontal Res; 2016 Jun; 51(3):395-406. PubMed ID: 26364725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collaborative action of Toll-like and NOD-like receptors as modulators of the inflammatory response to pathogenic bacteria.
    Oviedo-Boyso J; Bravo-Patiño A; Baizabal-Aguirre VM
    Mediators Inflamm; 2014; 2014():432785. PubMed ID: 25525300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Toll-like receptor signaling pathways in innate immune responses.
    Qian C; Cao X
    Ann N Y Acad Sci; 2013 Apr; 1283():67-74. PubMed ID: 23163321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity.
    Espinosa A; Alfano JR
    Cell Microbiol; 2004 Nov; 6(11):1027-40. PubMed ID: 15469432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oyster Versatile IKKα/βs Are Involved in Toll-Like Receptor and RIG-I-Like Receptor Signaling for Innate Immune Response.
    Huang B; Zhang L; Xu F; Tang X; Li L; Wang W; Liu M; Zhang G
    Front Immunol; 2019; 10():1826. PubMed ID: 31417578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signaling pathways downstream of pattern-recognition receptors and their cross talk.
    Lee MS; Kim YJ
    Annu Rev Biochem; 2007; 76():447-80. PubMed ID: 17328678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense.
    Peterson LW; Philip NH; DeLaney A; Wynosky-Dolfi MA; Asklof K; Gray F; Choa R; Bjanes E; Buza EL; Hu B; Dillon CP; Green DR; Berger SB; Gough PJ; Bertin J; Brodsky IE
    J Exp Med; 2017 Nov; 214(11):3171-3182. PubMed ID: 28855241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of platelet responses triggered by Toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB.
    Rivadeneyra L; Carestia A; Etulain J; Pozner RG; Fondevila C; Negrotto S; Schattner M
    Thromb Res; 2014 Feb; 133(2):235-43. PubMed ID: 24331207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autophagy and innate immunity: Insights from invertebrate model organisms.
    Kuo CJ; Hansen M; Troemel E
    Autophagy; 2018; 14(2):233-242. PubMed ID: 29130360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nfa34810 Facilitates
    Ji X; Zhang X; Li H; Sun L; Hou X; Song H; Han L; Xu S; Qiu X; Wang X; Zheng N; Li Z
    Infect Immun; 2020 Mar; 88(4):. PubMed ID: 31964749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toll-Like Receptors Signaling in the Tumor Microenvironment.
    McCall KD; Muccioli M; Benencia F
    Adv Exp Med Biol; 2020; 1223():81-97. PubMed ID: 32030686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. To con protection: TIR-domain containing proteins (Tcp) and innate immune evasion.
    Patterson NJ; Werling D
    Vet Immunol Immunopathol; 2013 Sep; 155(3):147-54. PubMed ID: 23871438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. To catch a thief: regulated RIPK1 post-translational modifications as a fail-safe system to detect and overcome pathogen subversion of immune signaling.
    Peterson LW; Brodsky IE
    Curr Opin Microbiol; 2020 Apr; 54():111-118. PubMed ID: 32092691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways.
    Zhang J; Kong X; Zhou C; Li L; Nie G; Li X
    Fish Shellfish Immunol; 2014 Dec; 41(2):380-8. PubMed ID: 25241605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.