BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26648958)

  • 1. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria-An Amazing Defense Tool Against Hyperosmotic Stress.
    Trono D; Laus MN; Soccio M; Alfarano M; Pastore D
    Front Plant Sci; 2015; 6():1072. PubMed ID: 26648958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The uniqueness of the plant mitochondrial potassium channel.
    Pastore D; Soccio M; Laus MN; Trono D
    BMB Rep; 2013 Aug; 46(8):391-7. PubMed ID: 23977986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channel-oxidative phosphorylation relationship in durum wheat mitochondria from control and hyperosmotic-stressed seedlings.
    Trono D; Soccio M; Laus MN; Pastore D
    Plant Cell Environ; 2011 Dec; 34(12):2093-108. PubMed ID: 21819416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress.
    Laus MN; Soccio M; Trono D; Liberatore MT; Pastore D
    J Exp Bot; 2011 Jan; 62(1):141-54. PubMed ID: 20801915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria.
    Pastore D; Trono D; Laus MN; Di Fonzo N; Flagella Z
    J Exp Bot; 2007; 58(2):195-210. PubMed ID: 17261694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant inner membrane anion channel (PIMAC) function in plant mitochondria.
    Laus MN; Soccio M; Trono D; Cattivelli L; Pastore D
    Plant Cell Physiol; 2008 Jul; 49(7):1039-55. PubMed ID: 18511459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The existence of phospholipase A(2) activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.).
    Trono D; Soccio M; Laus MN; Pastore D
    Plant Sci; 2013 Feb; 199-200():91-102. PubMed ID: 23265322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport pathways--proton motive force interrelationship in durum wheat mitochondria.
    Trono D; Laus MN; Soccio M; Pastore D
    Int J Mol Sci; 2014 May; 15(5):8186-215. PubMed ID: 24821541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria.
    Pastore D; Fratianni A; Di Pede S; Passarella S
    FEBS Lett; 2000 Mar; 470(1):88-92. PubMed ID: 10722851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The existence of the K(+) channel in plant mitochondria.
    Pastore D; Stoppelli MC; Di Fonzo N; Passarella S
    J Biol Chem; 1999 Sep; 274(38):26683-90. PubMed ID: 10480870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.
    Zhou L; Cortassa S; Wei AC; Aon MA; Winslow RL; O'Rourke B
    Biophys J; 2009 Oct; 97(7):1843-52. PubMed ID: 19804714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale.
    Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V
    BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulation of the mitochondrial ATP-sensitive potassium channel in rat uterus cells by ROS].
    Badziuk OB; Mazur IuIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2011; 83(3):48-57. PubMed ID: 21888054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies.
    Dzbek J; Korzeniewski B
    J Biol Chem; 2008 Nov; 283(48):33232-9. PubMed ID: 18694940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation.
    Ozcan C; Bienengraeber M; Dzeja PP; Terzic A
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H531-9. PubMed ID: 11788400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-sensitive cation-channel in wheat (Triticum durum Desf.): identification and characterization of a plant mitochondrial channel by patch-clamp.
    De Marchi U; Checchetto V; Zanetti M; Teardo E; Soccio M; Formentin E; Giacometti GM; Pastore D; Zoratti M; Szabò I
    Cell Physiol Biochem; 2010; 26(6):975-82. PubMed ID: 21220928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential.
    Heinen A; Camara AK; Aldakkak M; Rhodes SS; Riess ML; Stowe DF
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C148-56. PubMed ID: 16870831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms.
    Kadenbach B; Ramzan R; Wen L; Vogt S
    Biochim Biophys Acta; 2010 Mar; 1800(3):205-12. PubMed ID: 19409964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
    Kang PT; Chen CL; Lin P; Chilian WM; Chen YR
    Basic Res Cardiol; 2017 Jul; 112(4):36. PubMed ID: 28508960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.