BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26649559)

  • 1. Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029.
    Khan S; Shahbaaz M; Bisetty K; Ahmad F; Hassan MI
    Interdiscip Sci; 2017 Mar; 9(1):96-106. PubMed ID: 26649559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309.
    Shahbaaz M; Bisetty K; Ahmad F; Hassan MI
    Comput Biol Chem; 2015 Dec; 59 Pt A():67-80. PubMed ID: 26414949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomes of Chlamydia pneumoniae and C. trachomatis.
    Kalman S; Mitchell W; Marathe R; Lammel C; Fan J; Hyman RW; Olinger L; Grimwood J; Davis RW; Stephens RS
    Nat Genet; 1999 Apr; 21(4):385-9. PubMed ID: 10192388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization.
    Shahbaaz M; Bisetty K; Ahmad F; Hassan MI
    OMICS; 2015 Jul; 19(7):416-34. PubMed ID: 26076386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between components of the type III secretion system of Chlamydiaceae.
    Slepenkin A; de la Maza LM; Peterson EM
    J Bacteriol; 2005 Jan; 187(2):473-9. PubMed ID: 15629918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of Streptococcus core genome to reveal druggable targets and novel therapeutics against S. pneumoniae.
    Chowdhury ZM; Bhattacharjee A; Ahammad I; Hossain MU; Jaber AA; Rahman A; Dev PC; Salimullah M; Keya CA
    PLoS One; 2022; 17(8):e0272945. PubMed ID: 35980906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification and functional analyses of putative virulence factors of Mycobacterium tuberculosis: A combined sequence and structure based study.
    Shahbaaz M; Potemkin V; Bisetty K; Hassan MI; Hussien MA
    Comput Biol Chem; 2020 May; 87():107270. PubMed ID: 32438116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a highly flexible and comprehensive gene collection representing the ORFeome of the human pathogen Chlamydia pneumoniae.
    Maier CJ; Maier RH; Virok DP; Maass M; Hintner H; Bauer JW; Onder K
    BMC Genomics; 2012 Nov; 13():632. PubMed ID: 23157390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and purification of low calcium response protein H of Chlamydophila pneumoniae.
    Faludi I; Csanádi A; Szabó AM; Burián K; Endrész V; Miczák A
    Acta Microbiol Immunol Hung; 2009 Dec; 56(4):389-97. PubMed ID: 20038490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae.
    Engel AC; Herbst F; Kerres A; Galle JN; Hegemann JH
    PLoS One; 2016; 11(2):e0148509. PubMed ID: 26895250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydophila pneumoniae PknD exhibits dual amino acid specificity and phosphorylates Cpn0712, a putative type III secretion YscD homolog.
    Johnson DL; Mahony JB
    J Bacteriol; 2007 Nov; 189(21):7549-55. PubMed ID: 17766419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA.
    Shirai M; Hirakawa H; Kimoto M; Tabuchi M; Kishi F; Ouchi K; Shiba T; Ishii K; Hattori M; Kuhara S; Nakazawa T
    Nucleic Acids Res; 2000 Jun; 28(12):2311-4. PubMed ID: 10871362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome analysis of Chlamydia trachomatis for functional characterization of hypothetical proteins to discover novel drug targets.
    Turab Naqvi AA; Rahman S; Rubi ; Zeya F; Kumar K; Choudhary H; Jamal MS; Kim J; Hassan MI
    Int J Biol Macromol; 2017 Mar; 96():234-240. PubMed ID: 27993657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic screening for Chlamydophila pneumoniae-specific antigens using serum samples from patients with primary infection.
    Yasui Y; Yanatori I; Kawai Y; Miura K; Suminami Y; Hirota T; Tamari M; Ouchi K; Kishi F
    FEMS Microbiol Lett; 2012 Apr; 329(2):168-76. PubMed ID: 22309593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome sequence of the cat pathogen, Chlamydophila felis.
    Azuma Y; Hirakawa H; Yamashita A; Cai Y; Rahman MA; Suzuki H; Mitaku S; Toh H; Goto S; Murakami T; Sugi K; Hayashi H; Fukushi H; Hattori M; Kuhara S; Shirai M
    DNA Res; 2006 Feb; 13(1):15-23. PubMed ID: 16766509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20.
    Shahbaaz M; Hassan MI; Ahmad F
    PLoS One; 2013; 8(12):e84263. PubMed ID: 24391926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CPn0572, the C. pneumoniae ortholog of TarP, reorganizes the actin cytoskeleton via a newly identified F-actin binding domain and recruitment of vinculin.
    Braun C; Alcázar-Román AR; Laska A; Mölleken K; Fleig U; Hegemann JH
    PLoS One; 2019; 14(1):e0210403. PubMed ID: 30629647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a hypervariable region in the genome of Chlamydophila pneumoniae.
    Daugaard L; Christiansen G; Birkelund S
    FEMS Microbiol Lett; 2001 Sep; 203(2):241-8. PubMed ID: 11583855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydophila pneumoniae. Mechanisms of target cell infection and activation.
    Krüll M; Maass M; Suttorp N; Rupp J
    Thromb Haemost; 2005 Aug; 94(2):319-26. PubMed ID: 16113821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183.
    Herrmann M; Schuhmacher A; Mühldorfer I; Melchers K; Prothmann C; Dammeier S
    Res Microbiol; 2006; 157(6):513-24. PubMed ID: 16797933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.