These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26649559)

  • 21. A new family of highly variable proteins in the Chlamydophila pneumoniae genome.
    Rocha EP; Pradillon O; Bui H; Sayada C; Denamur E
    Nucleic Acids Res; 2002 Oct; 30(20):4351-60. PubMed ID: 12384581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between CdsD, CdsQ, and CdsL, three putative Chlamydophila pneumoniae type III secretion proteins.
    Johnson DL; Stone CB; Mahony JB
    J Bacteriol; 2008 Apr; 190(8):2972-80. PubMed ID: 18281400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of outer membrane protein genes omp and pmp in the whole genome sequences of Chlamydia pneumoniae isolates from Japan and the United States.
    Shirai M; Hirakawa H; Ouchi K; Tabuchi M; Kishi F; Kimoto M; Takeuchi H; Nishida J; Shibata K; Fujinaga R; Yoneda H; Matsushima H; Tanaka C; Furukawa S; Miura K; Nakazawa A; Ishii K; Shiba T; Hattori M; Kuhara S; Nakazawa T
    J Infect Dis; 2000 Jun; 181 Suppl 3():S524-7. PubMed ID: 10839753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlamydia pneumoniae CPj0783 interaction with Huntingtin-protein14.
    Yanatori I; Yasui Y; Ouchi K; Kishi F
    Int Microbiol; 2015 Dec; 18(4):225-33. PubMed ID: 27611675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani.
    Enany S
    J Infect Public Health; 2014; 7(4):296-307. PubMed ID: 24802661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a ubiG-like gene involved in ubiquinone biosynthesis from Chlamydophila pneumoniae AR39.
    Liu J; Zhang X; Liu J
    Lett Appl Microbiol; 2007 Jul; 45(1):47-54. PubMed ID: 17594460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance.
    da Costa WLO; Araújo CLA; Dias LM; Pereira LCS; Alves JTC; Araújo FA; Folador EL; Henriques I; Silva A; Folador ARC
    PLoS One; 2018; 13(6):e0198965. PubMed ID: 29940001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae.
    Grimwood J; Stephens RS
    Microb Comp Genomics; 1999; 4(3):187-201. PubMed ID: 10587946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Secretion of Cpn0796 from Chlamydia pneumoniae into the host cell cytoplasm by an autotransporter mechanism.
    Vandahl BB; Stensballe A; Roepstorff P; Christiansen G; Birkelund S
    Cell Microbiol; 2005 Jun; 7(6):825-36. PubMed ID: 15888085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of Chlamydia pneumoniae polymorphic membrane protein family genes.
    Grimwood J; Olinger L; Stephens RS
    Infect Immun; 2001 Apr; 69(4):2383-9. PubMed ID: 11254597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription, expression, localization and immunoreactivity of Chlamydophila pneumoniae Phospholipase D protein.
    Ciervo A; Mancini F; Cassone A
    Microb Pathog; 2007; 43(2-3):96-105. PubMed ID: 17570631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic characterization of Chlamydophila pneumoniae phospholipase D.
    Mancini F; Ciervo A
    New Microbiol; 2015 Jan; 38(1):59-66. PubMed ID: 25742148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlamydophila pneumoniae.
    Blasi F; Tarsia P; Aliberti S
    Clin Microbiol Infect; 2009 Jan; 15(1):29-35. PubMed ID: 19220337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of Ser94 in RNase HIII from Chlamydophila pneumoniae in the recognition of a single ribonucleotide misincorporated into double-stranded DNA.
    Lu Z; Hou J; Wang Y; Liu J
    Biochim Biophys Acta; 2012 Jul; 1824(7):859-65. PubMed ID: 22561532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in technologies for developing drugs against Chlamydia pneumoniae.
    Hanski L; Vuorela PM
    Expert Opin Drug Discov; 2014 Jul; 9(7):791-802. PubMed ID: 24792993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: An in silico approach for prioritizing the targets.
    Gazi MA; Kibria MG; Mahfuz M; Islam MR; Ghosh P; Afsar MN; Khan MA; Ahmed T
    Gene; 2016 Oct; 591(2):442-55. PubMed ID: 27374154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of functional candidates amongst hypothetical proteins of Mycobacterium leprae Br4923, a causative agent of leprosy.
    Naqvi AA; Ahmad F; Hassan MI
    Genome; 2015 Jan; 58(1):25-42. PubMed ID: 25985983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome Wide Analysis of Chlamydia pneumoniae for Candidate Vaccine Development.
    Sharma A; Soundhara Rajan G; Kharb R; Biswas S
    Curr Comput Aided Drug Des; 2016; 12(3):206-215. PubMed ID: 27225643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide analysis of Chlamydophila pneumoniae gene expression at the late stage of infection.
    Miura K; Toh H; Hirakawa H; Sugii M; Murata M; Nakai K; Tashiro K; Kuhara S; Azuma Y; Shirai M
    DNA Res; 2008 Apr; 15(2):83-91. PubMed ID: 18222926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.