These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26649642)
1. Interactions and Toxicity of Cu-Zn mixtures to Hordeum vulgare in Different Soils Can Be Rationalized with Bioavailability-Based Prediction Models. Qiu H; Versieren L; Rangel GG; Smolders E Environ Sci Technol; 2016 Jan; 50(2):1014-22. PubMed ID: 26649642 [TBL] [Abstract][Full Text] [Related]
2. Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing? Versieren L; Evers S; De Schamphelaere K; Blust R; Smolders E Environ Toxicol Chem; 2016 Oct; 35(10):2483-2492. PubMed ID: 26800646 [TBL] [Abstract][Full Text] [Related]
3. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Versieren L; Evers S; AbdElgawad H; Asard H; Smolders E Environ Toxicol Chem; 2017 Jan; 36(1):220-230. PubMed ID: 27311849 [TBL] [Abstract][Full Text] [Related]
4. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat. Wang X; Luo X; Wang Q; Liu Y; Naidu R Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486 [TBL] [Abstract][Full Text] [Related]
5. Additive toxicity of zinc and arsenate on barley (Hordeum vulgare) root elongation. Guzmán-Rangel G; Versieren L; Qiu H; Smolders E Environ Toxicol Chem; 2017 Jun; 36(6):1556-1562. PubMed ID: 27808449 [TBL] [Abstract][Full Text] [Related]
6. Bioavailability, mobility, and toxicity of Cu in soils around the Dexing Cu mine in China. Guo G; Yuan T; Wang W; Li D; Cheng J; Gao Y; Zhou P Environ Geochem Health; 2011 Apr; 33(2):217-24. PubMed ID: 20697779 [TBL] [Abstract][Full Text] [Related]
7. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils. Ali NA; Ater M; Sunahara GI; Robidoux PY Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259 [TBL] [Abstract][Full Text] [Related]
8. Prediction of soil copper phytotoxicity to barley root elongation by an EDTA extraction method. Jiang B; Ma Y; Zhu G; Li J J Hazard Mater; 2020 May; 389():121869. PubMed ID: 31848098 [TBL] [Abstract][Full Text] [Related]
9. Development of electrostatic-based bioavailability models for interpreting and predicting differential phytotoxicity and uptake of metal mixtures across different soils. Qiu H; He E Environ Pollut; 2017 Jul; 226():308-316. PubMed ID: 28390704 [TBL] [Abstract][Full Text] [Related]
10. Bioavailability of copper and zinc in mining soils. Smith BA; Greenberg B; Stephenson GL Arch Environ Contam Toxicol; 2012 Jan; 62(1):1-12. PubMed ID: 21594672 [TBL] [Abstract][Full Text] [Related]
11. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes. Ginocchio R; De la Fuente LM; Sánchez P; Bustamante E; Silva Y; Urrestarazu P; Rodríguez PH Environ Toxicol Chem; 2009 Oct; 28(10):2069-81. PubMed ID: 19480535 [TBL] [Abstract][Full Text] [Related]
12. Interactions of arsenic, copper, and zinc in soil-plant system: Partition, uptake and phytotoxicity. Gong B; He E; Qiu H; Van Gestel CAM; Romero-Freire A; Zhao L; Xu X; Cao X Sci Total Environ; 2020 Nov; 745():140926. PubMed ID: 32712499 [TBL] [Abstract][Full Text] [Related]
13. Influences of soil properties and leaching on copper toxicity to barley root elongation. Li B; Ma Y; McLaughlin MJ; Kirby JK; Cozens G; Liu J Environ Toxicol Chem; 2010 Apr; 29(4):835-42. PubMed ID: 20821512 [TBL] [Abstract][Full Text] [Related]
14. Influence of soil properties and aging on the toxicity of copper on compost worm and barley. Daoust CM; Bastien C; Deschênes L J Environ Qual; 2006; 35(2):558-67. PubMed ID: 16510700 [TBL] [Abstract][Full Text] [Related]
15. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity. Hamels F; Malevé J; Sonnet P; Kleja DB; Smolders E Environ Toxicol Chem; 2014 Nov; 33(11):2479-87. PubMed ID: 25053440 [TBL] [Abstract][Full Text] [Related]
16. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Heemsbergen DA; Warne MS; Broos K; Bell M; Nash D; McLaughlin M; Whatmuff M; Barry G; Pritchard D; Penney N Sci Total Environ; 2009 Apr; 407(8):2546-56. PubMed ID: 19215964 [TBL] [Abstract][Full Text] [Related]
17. Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Wang X; Li B; Ma Y; Hua L Ecotoxicol Environ Saf; 2010 Sep; 73(6):1272-8. PubMed ID: 20570355 [TBL] [Abstract][Full Text] [Related]
18. Toxicity and metal bioaccumulation in Hordeum vulgare exposed to leached and nonleached copper amended soils. Schwertfeger DM; Hendershot WH Environ Toxicol Chem; 2013 Aug; 32(8):1800-9. PubMed ID: 23606189 [TBL] [Abstract][Full Text] [Related]
19. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH. Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297 [TBL] [Abstract][Full Text] [Related]
20. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Thakali S; Allen HE; Di Toro DM; Ponizovsky AA; Rooney CP; Zhao FJ; McGrath SP Environ Sci Technol; 2006 Nov; 40(22):7085-93. PubMed ID: 17154020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]