These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26650197)

  • 1. Impact of Dopant Compensation on Graded p-n Junctions in Si Nanowires.
    Amit I; Jeon N; Lauhon LJ; Rosenwaks Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):128-34. PubMed ID: 26650197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially resolved correlation of active and total doping concentrations in VLS grown nanowires.
    Amit I; Givan U; Connell JG; Paul DF; Hammond JS; Lauhon LJ; Rosenwaks Y
    Nano Lett; 2013 Jun; 13(6):2598-604. PubMed ID: 23668801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obtaining uniform dopant distributions in VLS-grown Si nanowires.
    Koren E; Hyun JK; Givan U; Hemesath ER; Lauhon LJ; Rosenwaks Y
    Nano Lett; 2011 Jan; 11(1):183-7. PubMed ID: 21126102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.
    Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF
    ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires.
    Zhuge F; Yanagida T; Fukata N; Uchida K; Kanai M; Nagashima K; Meng G; He Y; Rahong S; Li X; Kawai T
    J Am Chem Soc; 2014 Oct; 136(40):14100-6. PubMed ID: 25229842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding Highly Nonequilibrium Boron Concentrations and Abrupt Morphology in p-Type/n-Type Silicon Nanowire Superlattices.
    Hill DJ; Teitsworth TS; Kim S; Christesen JD; Cahoon JF
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37105-37111. PubMed ID: 28956906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.
    Kim S; Hill DJ; Pinion CW; Christesen JD; McBride JR; Cahoon JF
    ACS Nano; 2017 May; 11(5):4453-4462. PubMed ID: 28323413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography.
    Yazdi S; Berg A; Borgström MT; Kasama T; Beleggia M; Samuelson L; Wagner JB
    Small; 2015 Jun; 11(22):2687-95. PubMed ID: 25656570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of p-type GaN nanowires.
    Kim SW; Park YH; Kim I; Park TE; Kwon BW; Choi WK; Choi HJ
    Nanoscale; 2013 Sep; 5(18):8550-4. PubMed ID: 23892611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting Kelvin probe force microscopy under an applied electric field: local electronic behavior of vapor-liquid-solid Si nanowires.
    Quitoriano NJ; Sanderson RN; Bae SS; Ragan R
    Nanotechnology; 2013 May; 24(20):205704. PubMed ID: 23609527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy.
    Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R
    Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of active dopant distribution and diffusion in individual silicon nanowires.
    Koren E; Berkovitch N; Rosenwaks Y
    Nano Lett; 2010 Apr; 10(4):1163-7. PubMed ID: 20196550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowire Kinking Modulates Doping Profiles by Reshaping the Liquid-Solid Growth Interface.
    Sun Z; Seidman DN; Lauhon LJ
    Nano Lett; 2017 Jul; 17(7):4518-4525. PubMed ID: 28658572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ doping of catalyst-free InAs nanowires.
    Ghoneim H; Mensch P; Schmid H; Bessire CD; Rhyner R; Schenk A; Rettner C; Karg S; Moselund KE; Riel H; Björk MT
    Nanotechnology; 2012 Dec; 23(50):505708. PubMed ID: 23187068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires.
    Choi W; Seabron E; Mohseni PK; Kim JD; Gokus T; Cernescu A; Pochet P; Johnson HT; Wilson WL; Li X
    ACS Nano; 2017 Feb; 11(2):1530-1539. PubMed ID: 28135065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging.
    Eisenhawer B; Zhang D; Clavel R; Berger A; Michler J; Christiansen S
    Nanotechnology; 2011 Feb; 22(7):075706. PubMed ID: 21233539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy.
    Minj A; Cros A; Auzelle T; Pernot J; Daudin B
    Nanotechnology; 2016 Sep; 27(38):385202. PubMed ID: 27518150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor.
    Molnar W; Lugstein A; Wojcik T; Pongratz P; Auner N; Bauch C; Bertagnolli E
    Beilstein J Nanotechnol; 2012; 3():564-9. PubMed ID: 23019552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradients of Be-dopant concentration in self-catalyzed GaAs nanowires.
    Rizzo Piton M; Koivusalo E; Hakkarainen T; Galeti HVA; De Giovanni Rodrigues A; Talmila S; Souto S; Lupo D; Galvão Gobato Y; Guina M
    Nanotechnology; 2019 Aug; 30(33):335709. PubMed ID: 30995612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.