BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 26650451)

  • 1. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.
    Li R; Feng C; Hu W; Xi B; Chen N; Zhao B; Liu Y; Hao C; Pu J
    Water Res; 2016 Feb; 89():171-9. PubMed ID: 26650451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.
    Sahinkaya E; Dursun N
    Chemosphere; 2012 Sep; 89(2):144-9. PubMed ID: 22682897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes.
    Peng L; Liu Y; Gao SH; Chen X; Ni BJ
    Water Res; 2016 Feb; 89():1-8. PubMed ID: 26619398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.
    Sahinkaya E; Kilic A
    Water Res; 2014 Mar; 50():278-86. PubMed ID: 24384544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.
    Sahinkaya E; Dursun N; Kilic A; Demirel S; Uyanik S; Cinar O
    Water Res; 2011 Dec; 45(20):6661-7. PubMed ID: 22030084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal.
    Ucar D; Cokgor EU; Sahinkaya E
    Environ Technol; 2016; 37(2):183-91. PubMed ID: 26102288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction.
    Sahinkaya E; Yurtsever A; Ucar D
    J Hazard Mater; 2017 Feb; 324(Pt A):15-21. PubMed ID: 26906435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics of a Combined Heterotrophic and Sulfur Autotrophic Denitrification Technology for Removal of High Nitrate in Water].
    Li X; Ma H; Huang Y; Zhu L; Yang PB; Zhu Q
    Huan Jing Ke Xue; 2016 Jul; 37(7):2646-2651. PubMed ID: 29964474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of elemental sulfur and thiosulfate as electron sources for water denitrification.
    Sahinkaya E; Dursun N
    Bioprocess Biosyst Eng; 2015 Mar; 38(3):531-41. PubMed ID: 25266591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on sulfur-based autotrophic denitrification with different electron donors].
    Yuan Y; Zhou WL; Wang H; He SB
    Huan Jing Ke Xue; 2013 May; 34(5):1835-44. PubMed ID: 23914536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor.
    Zhang L; Song Y; Zuo Y; Huo S; Liang C; Hu C
    Chemosphere; 2019 Apr; 221():375-382. PubMed ID: 30641379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions.
    Oh SE; Yoo YB; Young JC; Kim IS
    J Biotechnol; 2001 Dec; 92(1):1-8. PubMed ID: 11604167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.
    Zhang L; Zhang C; Hu C; Liu H; Bai Y; Qu J
    Water Res; 2015 Nov; 85():422-31. PubMed ID: 26364226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.
    Hosono T; Alvarez K; Lin IT; Shimada J
    J Contam Hydrol; 2015 Dec; 183():72-81. PubMed ID: 26529303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water.
    Liu H; Jiang W; Wan D; Qu J
    J Hazard Mater; 2009 Sep; 169(1-3):23-8. PubMed ID: 19369001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological denitrification in marine aquaculture systems: A multiple electron donor microcosm study.
    He Q; Zhang D; Main K; Feng C; Ergas SJ
    Bioresour Technol; 2018 Sep; 263():340-349. PubMed ID: 29758484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water.
    Wang Z; Fei X; He S; Huang J; Zhou W
    Sci Total Environ; 2017 Feb; 579():1706-1714. PubMed ID: 27923576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.
    Yin Z; Xie L; Khanal SK; Zhou Q
    Environ Technol; 2016; 37(9):1110-21. PubMed ID: 26495763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the denitrification of wastewater containing high concentrations of nitrate with methanol in a sulfur-packed reactor.
    Kim IS; Oh SE; Bum MS; Lee JL; Lee ST
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):91-6. PubMed ID: 12073138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.