These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26650512)

  • 1. Investigating the linkage between disease-causing amino acid variants and their effect on protein stability and binding.
    Peng Y; Alexov E
    Proteins; 2016 Feb; 84(2):232-9. PubMed ID: 26650512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach.
    Getov I; Petukh M; Alexov E
    Int J Mol Sci; 2016 Apr; 17(4):512. PubMed ID: 27070572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.
    Petukh M; Dai L; Alexov E
    Int J Mol Sci; 2016 Apr; 17(4):547. PubMed ID: 27077847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF; Bader RF
    Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting folding free energy changes upon single point mutations.
    Zhang Z; Wang L; Gao Y; Zhang J; Zhenirovskyy M; Alexov E
    Bioinformatics; 2012 Mar; 28(5):664-71. PubMed ID: 22238268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Most Monogenic Disorders Are Caused by Mutations Altering Protein Folding Free Energy.
    Pandey P; Alexov E
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the Effect of Mutations on Protein Folding and Protein-Protein Interactions.
    Strokach A; Corbi-Verge C; Teyra J; Kim PM
    Methods Mol Biol; 2019; 1851():1-17. PubMed ID: 30298389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On human disease-causing amino acid variants: statistical study of sequence and structural patterns.
    Petukh M; Kucukkal TG; Alexov E
    Hum Mutat; 2015 May; 36(5):524-534. PubMed ID: 25689729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing folding and binding stability in a viral coat protein: a comparison between substitutions accessible through mutation and those fixed by natural selection.
    Miller CR; Lee KH; Wichman HA; Ytreberg FM
    PLoS One; 2014; 9(11):e112988. PubMed ID: 25405628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of non-covalent interactions for determining the folding rate of two-state proteins.
    Gromiha MM; Saraboji K; Ahmad S; Ponnuswamy MN; Suwa M
    Biophys Chem; 2004 Feb; 107(3):263-72. PubMed ID: 14967241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases.
    Peng Y; Alexov E; Basu S
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
    Badasyan A; Liu Z; Chan HS
    J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence.
    Gilis D; Rooman M
    J Mol Biol; 1997 Sep; 272(2):276-90. PubMed ID: 9299354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mega-scale experimental analysis of protein folding stability in biology and design.
    Tsuboyama K; Dauparas J; Chen J; Laine E; Mohseni Behbahani Y; Weinstein JJ; Mangan NM; Ovchinnikov S; Rocklin GJ
    Nature; 2023 Aug; 620(7973):434-444. PubMed ID: 37468638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physics of the interactions governing folding and association of proteins.
    Guo W; Shea JE; Berry RS
    Ann N Y Acad Sci; 2005 Dec; 1066():34-53. PubMed ID: 16533917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-amino acid interaction energies in three-dimensional-lattice Monte Carlo simulations of a model 27-mer protein: Folding thermodynamics and kinetics.
    Leonhard K; Prausnitz JM; Radke CJ
    Protein Sci; 2004 Feb; 13(2):358-69. PubMed ID: 14739322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global stability of protein folding from an empirical free energy function.
    Ruiz-Blanco YB; Marrero-Ponce Y; Paz W; García Y; Salgado J
    J Theor Biol; 2013 Mar; 321():44-53. PubMed ID: 23313334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.