These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 26650620)

  • 1. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G; Yang L; Lv Y
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix elasticity-modified scaffold loaded with SDF-1α improves the in situ regeneration of segmental bone defect in rabbit radius.
    Chen G; Lv Y
    Sci Rep; 2017 May; 7(1):1672. PubMed ID: 28490814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler?
    Lyons FG; Gleeson JP; Partap S; Coghlan K; O'Brien FJ
    Clin Orthop Relat Res; 2014 Apr; 472(4):1318-28. PubMed ID: 24385037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ tissue regeneration through SDF-1α driven cell recruitment and stiffness-mediated bone regeneration in a critical-sized segmental femoral defect.
    Cipitria A; Boettcher K; Schoenhals S; Garske DS; Schmidt-Bleek K; Ellinghaus A; Dienelt A; Peters A; Mehta M; Madl CM; Huebsch N; Mooney DJ; Duda GN
    Acta Biomater; 2017 Sep; 60():50-63. PubMed ID: 28739546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo.
    Prosecká E; Rampichová M; Litvinec A; Tonar Z; Králíčková M; Vojtová L; Kochová P; Plencner M; Buzgo M; Míčková A; Jančář J; Amler E
    J Biomed Mater Res A; 2015 Feb; 103(2):671-82. PubMed ID: 24838634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.
    Rathbone CR; Guda T; Singleton BM; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomed Mater Res A; 2014 May; 102(5):1458-66. PubMed ID: 23776110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model.
    Kim J; McBride S; Donovan A; Darr A; Magno MH; Hollinger JO
    Biomed Mater; 2015 May; 10(3):035001. PubMed ID: 25953950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-decorated hydroxyapatite scaffold with on-demand delivery of dexamethasone and stromal cell derived factor-1 for enhanced osteogenesis.
    Zhang B; Li H; He L; Han Z; Zhou T; Zhi W; Lu X; Lu X; Weng J
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():355-370. PubMed ID: 29752108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of segmental long bone defect in a rabbit radius nonunion model: comparison of cylindrical porous titanium and hydroxyapatite scaffolds.
    Zhang M; Wang GL; Zhang HF; Hu XD; Shi XY; Li S; Lin W
    Artif Organs; 2014 Jun; 38(6):493-502. PubMed ID: 24372398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration.
    Yin B; Ma P; Chen J; Wang H; Wu G; Li B; Li Q; Huang Z; Qiu G; Wu Z
    Int J Mol Sci; 2016 Apr; 17(4):575. PubMed ID: 27092492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.
    Wu H; Liu GH; Wu Q; Yu B
    Genet Mol Res; 2015 Oct; 14(4):11933-43. PubMed ID: 26505341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits.
    Zhang H; Zhou Y; Yu N; Ma H; Wang K; Liu J; Zhang W; Cai Z; He Y
    Acta Biomater; 2019 Jun; 91():82-98. PubMed ID: 30986527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.
    Guillaume O; Geven MA; Sprecher CM; Stadelmann VA; Grijpma DW; Tang TT; Qin L; Lai Y; Alini M; de Bruijn JD; Yuan H; Richards RG; Eglin D
    Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo.
    Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineralised Collagen Scaffolds Loaded with Stromal Cell-derived Factor-1 Improve Mandibular Bone Regeneration.
    Liu Y; Liu S; Fu Y; Chang DT; Zhou YH
    Chin J Dent Res; 2014; 17(1):23-9. PubMed ID: 25028686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation.
    Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E
    Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.