These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26650721)

  • 1. Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-patient Study.
    Wang L; Zheng J; Maehara A; Yang C; Billiar KL; Wu Z; Bach R; Muccigrosso D; Mintz GS; Tang D
    PLoS Comput Biol; 2015 Dec; 11(12):e1004652. PubMed ID: 26650721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: An in vivo MRI-based 3D FSI study.
    Teng Z; Canton G; Yuan C; Ferguson M; Yang C; Huang X; Zheng J; Woodard PK; Tang D
    J Biomech Eng; 2010 Mar; 132(3):031007. PubMed ID: 20459195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid-structure interaction models and machine learning methods with patient follow-up data: a feasibility study.
    Guo X; Maehara A; Matsumura M; Wang L; Zheng J; Samady H; Mintz GS; Giddens DP; Tang D
    Biomed Eng Online; 2021 Apr; 20(1):34. PubMed ID: 33823858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study.
    Tang D; Teng Z; Canton G; Hatsukami TS; Dong L; Huang X; Yuan C
    Biomed Eng Online; 2009 Aug; 8():15. PubMed ID: 19650901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining IVUS + OCT Data, Biomechanical Models and Machine Learning Method for Accurate Coronary Plaque Morphology Quantification and Cap Thickness and Stress/Strain Index Predictions.
    Lv R; Wang L; Maehara A; Matsumura M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    J Funct Biomater; 2023 Jan; 14(1):. PubMed ID: 36662088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study.
    Fan R; Tang D; Yang C; Zheng J; Bach R; Wang L; Muccigrosso D; Billiar K; Zhu J; Ma G; Maehara A; Mintz GS
    Biomed Eng Online; 2014 Mar; 13(1):32. PubMed ID: 24669780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis.
    Wang L; Wu Z; Yang C; Zheng J; Bach R; Muccigrosso D; Billiar K; Maehara A; Mintz GS; Tang D
    Ann Biomed Eng; 2015 Jan; 43(1):107-21. PubMed ID: 25245219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Zheng J; Bach R; Billiar KL; Mintz GS
    J Biomech; 2018 Feb; 68():43-50. PubMed ID: 29274686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.
    Tang D; Yang C; Kobayashi S; Zheng J; Woodard PK; Teng Z; Billiar K; Bach R; Ku DN
    J Biomech Eng; 2009 Jun; 131(6):061010. PubMed ID: 19449964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
    Lv R; Maehara A; Matsumura M; Wang L; Zhang C; Huang M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Front Bioeng Biotechnol; 2021; 9():713525. PubMed ID: 34497800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying effect of intraplaque hemorrhage on critical plaque wall stress in human atherosclerotic plaques using three-dimensional fluid-structure interaction models.
    Huang X; Yang C; Canton G; Ferguson M; Yuan C; Tang D
    J Biomech Eng; 2012 Dec; 134(12):121004. PubMed ID: 23363206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-patient study for coronary vulnerable plaque model comparisons: 2D/3D and fluid-structure interaction simulations.
    Wang Q; Tang D; Wang L; Meahara A; Molony D; Samady H; Zheng J; Mintz GS; Stone GW; Giddens DP
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1383-1397. PubMed ID: 33759037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo IVUS-based 3-D fluid-structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis.
    Yang C; Bach RG; Zheng J; Naqa IE; Woodard PK; Teng Z; Billiar K; Tang D
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2420-8. PubMed ID: 19567341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multimodality Image-Based Fluid-Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Matsumura M; Mintz GS; Maehara A; Wang L; Tang D
    J Biomech Eng; 2019 Sep; 141(9):0910031-9. PubMed ID: 31141591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study.
    Guo X; Zhu J; Maehara A; Monoly D; Samady H; Wang L; Billiar KL; Zheng J; Yang C; Mintz GS; Giddens DP; Tang D
    Biomech Model Mechanobiol; 2017 Feb; 16(1):333-344. PubMed ID: 27561649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography-based patient-specific coronary artery reconstruction and fluid-structure interaction simulation.
    Wang J; Paritala PK; Mendieta JB; Komori Y; Raffel OC; Gu Y; Li Z
    Biomech Model Mechanobiol; 2020 Feb; 19(1):7-20. PubMed ID: 31292774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study.
    Tian J; Ren X; Vergallo R; Xing L; Yu H; Jia H; Soeda T; McNulty I; Hu S; Lee H; Yu B; Jang IK
    J Am Coll Cardiol; 2014 Jun; 63(21):2209-16. PubMed ID: 24632266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach.
    Yang C; Tang D; Kobayashi S; Zheng J; Woodard PK; Teng Z; Bach R; Ku DN
    Mol Cell Biomech; 2008; 5(4):259-274. PubMed ID: 19412353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.
    Liang X; Xenos M; Alemu Y; Rambhia SH; Lavi I; Kornowski R; Gruberg L; Fuchs S; Einav S; Bluestein D
    Coron Artery Dis; 2013 Mar; 24(2):75-87. PubMed ID: 23363983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of optical coherence tomography and intravascular ultrasound for evaluation of coronary lipid-rich atherosclerotic plaque progression and regression.
    Xie Z; Tian J; Ma L; Du H; Dong N; Hou J; He J; Dai J; Liu X; Pan H; Liu Y; Yu B
    Eur Heart J Cardiovasc Imaging; 2015 Dec; 16(12):1374-80. PubMed ID: 25911116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.