These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26650774)

  • 1. Videography supported adhesion, and proliferation behavior of MG-63 osteoblastic cells on 2.5D titania nanotube matrices.
    Manurung RV; Fu PW; Chu YS; Lo CM; Chattopadhyay S
    J Biomed Mater Res A; 2016 Apr; 104(4):842-52. PubMed ID: 26650774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of TiO2 nanotubes with different topographies.
    Wang Y; Wen C; Hodgson P; Li Y
    J Biomed Mater Res A; 2014 Mar; 102(3):743-51. PubMed ID: 23554372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell response of anodized nanotubes on titanium and titanium alloys.
    Minagar S; Wang J; Berndt CC; Ivanova EP; Wen C
    J Biomed Mater Res A; 2013 Sep; 101(9):2726-39. PubMed ID: 23436766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.
    Yu WQ; Zhang YL; Jiang XQ; Zhang FQ
    Oral Dis; 2010 Oct; 16(7):624-30. PubMed ID: 20604877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallinity of TiO
    Dias-Netipanyj MF; Sopchenski L; Gradowski T; Elifio-Esposito S; Popat KC; Soares P
    J Mater Sci Mater Med; 2020 Oct; 31(11):94. PubMed ID: 33128627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.
    Bauer S; Park J; von der Mark K; Schmuki P
    Acta Biomater; 2008 Sep; 4(5):1576-82. PubMed ID: 18485845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface.
    Gongadze E; Kabaso D; Bauer S; Park J; Schmuki P; Iglič A
    Mini Rev Med Chem; 2013 Feb; 13(2):194-200. PubMed ID: 22931535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium nanostructures for biomedical applications.
    Kulkarni M; Mazare A; Gongadze E; Perutkova Š; Kralj-Iglič V; Milošev I; Schmuki P; A Iglič ; Mozetič M
    Nanotechnology; 2015 Feb; 26(6):062002. PubMed ID: 25611515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells.
    Wu S; Zhang D; Bai J; Zheng H; Deng J; Gou Z; Gao C
    J Biomed Mater Res A; 2020 Nov; 108(11):2305-2318. PubMed ID: 32363805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent titanium dioxide nanotubes: Processing, characterization, and application in establishing cellular response mechanisms.
    Meyerink JG; Kota D; Wood ST; Crawford GA
    Acta Biomater; 2018 Oct; 79():364-374. PubMed ID: 30172934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters.
    Lin WT; Tan HL; Duan ZL; Yue B; Ma R; He G; Tang TT
    Int J Nanomedicine; 2014; 9():1215-30. PubMed ID: 24634583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells.
    Tian A; Qin X; Wu A; Zhang H; Xu Q; Xing D; Yang H; Qiu B; Xue X; Zhang D; Dong C
    Int J Nanomedicine; 2015; 10():2423-39. PubMed ID: 25848261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of sterilization in the cytocompatibility of titania nanotubes.
    Zhao L; Mei S; Wang W; Chu PK; Wu Z; Zhang Y
    Biomaterials; 2010 Mar; 31(8):2055-63. PubMed ID: 20022370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications.
    Wang Y; Zhang D; Wen C; Li Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16018-26. PubMed ID: 26136139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of diameter-controlled Ti-TiO2 nanotubes on the adhesion of osteoblast and fibroblast].
    Li HC; Zhang YM; Sun HP
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Feb; 47(2):122-6. PubMed ID: 22490253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of human coronary artery endothelial cells to plasma-treated titanium dioxide nanotubes of different diameters.
    Flašker A; Kulkarni M; Mrak-Poljšak K; Junkar I; Čučnik S; Žigon P; Mazare A; Schmuki P; Iglič A; Sodin-Semrl S
    J Biomed Mater Res A; 2016 May; 104(5):1113-20. PubMed ID: 26748552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating.
    Fathi M; Akbari B; Taheriazam A
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109743. PubMed ID: 31349530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.