These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 26650856)
1. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering. Chen S; Zhang Q; Nakamoto T; Kawazoe N; Chen G Tissue Eng Part C Methods; 2016 Mar; 22(3):189-98. PubMed ID: 26650856 [TBL] [Abstract][Full Text] [Related]
2. Pore size effect of collagen scaffolds on cartilage regeneration. Zhang Q; Lu H; Kawazoe N; Chen G Acta Biomater; 2014 May; 10(5):2005-13. PubMed ID: 24384122 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. Sawatjui N; Limpaiboon T; Schrobback K; Klein T J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056 [TBL] [Abstract][Full Text] [Related]
4. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates. Lu H; Ko YG; Kawazoe N; Chen G Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015 [TBL] [Abstract][Full Text] [Related]
5. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
6. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Chen CH; Kuo CY; Wang YJ; Chen JP Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886065 [TBL] [Abstract][Full Text] [Related]
7. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
8. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692 [TBL] [Abstract][Full Text] [Related]
9. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
10. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Zhang Y; Yang F; Liu K; Shen H; Zhu Y; Zhang W; Liu W; Wang S; Cao Y; Zhou G Biomaterials; 2012 Apr; 33(10):2926-35. PubMed ID: 22257722 [TBL] [Abstract][Full Text] [Related]
11. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. Arora A; Kothari A; Katti DS J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472 [TBL] [Abstract][Full Text] [Related]
12. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering]. Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782 [TBL] [Abstract][Full Text] [Related]
13. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Torricelli P; Gioffrè M; Fiorani A; Panzavolta S; Gualandi C; Fini M; Focarete ML; Bigi A Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():130-8. PubMed ID: 24433895 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Jeong CG; Zhang H; Hollister SJ Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597 [TBL] [Abstract][Full Text] [Related]
15. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
16. Highly Porous Gelatin Reinforced 3D Scaffolds for Articular Cartilage Regeneration. Amadori S; Torricelli P; Panzavolta S; Parrilli A; Fini M; Bigi A Macromol Biosci; 2015 Jul; 15(7):941-52. PubMed ID: 25787871 [TBL] [Abstract][Full Text] [Related]
17. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Lu H; Ko YG; Kawazoe N; Chen G Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151 [TBL] [Abstract][Full Text] [Related]
18. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
19. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Pfeiffer E; Vickers SM; Frank E; Grodzinsky AJ; Spector M Osteoarthritis Cartilage; 2008 Oct; 16(10):1237-44. PubMed ID: 18406634 [TBL] [Abstract][Full Text] [Related]
20. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]