These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26650915)

  • 1. Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems.
    Barge LM; Abedian Y; Doloboff IJ; Nuñez JE; Russell MJ; Kidd RD; Kanik I
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of Early Earth Hydrothermal Chimneys in a Thermal Gradient Environment.
    Hermis N; LeBlanc G; Barge LM
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes.
    Barge LM; Abedian Y; Russell MJ; Doloboff IJ; Cartwright JH; Kidd RD; Kanik I
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8184-7. PubMed ID: 25968422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars.
    Tan JSW; Salter TL; Watson JS; Waite JH; Sephton MA
    Astrobiology; 2023 Oct; 23(10):1045-1055. PubMed ID: 37506324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Amino Acids on Iron-Silicate Chemical Garden Precipitation.
    Hooks MR; Webster P; Weber JM; Perl S; Barge LM
    Langmuir; 2020 Jun; 36(21):5793-5801. PubMed ID: 32421344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Gardens as Electrochemical Systems: In Situ Characterization of Simulated Prebiotic Hydrothermal Vents by Impedance Spectroscopy.
    Chin K; Pasalic J; Hermis N; Barge LM
    Chempluschem; 2020 Dec; 85(12):2619-2628. PubMed ID: 33270995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geoelectrodes and Fuel Cells for Simulating Hydrothermal Vent Environments.
    Barge LM; Krause FC; Jones JP; Billings K; Sobron P
    Astrobiology; 2018 Sep; 18(9):1147-1158. PubMed ID: 30106308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds.
    Vance SD; Barge LM; Cardoso SSS; Cartwright JHE
    Astrobiology; 2019 May; 19(5):685-695. PubMed ID: 30964322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Minerals as Astrobiology Analogs of Hydrothermal Vent Chimneys.
    Jones JP; Firdosy SA; Barge LM; Bescup JC; Perl SM; Zhang X; Pate AM; Price RE
    Astrobiology; 2020 Dec; 20(12):1405-1412. PubMed ID: 32924535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the differing growth mechanisms of black-smoker and Lost City-type hydrothermal vents.
    Cardoso SSS; Cartwright JHE
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170387. PubMed ID: 28989315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.
    Barge LM; White LM
    Astrobiology; 2017 Sep; 17(9):820-833. PubMed ID: 28836818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of iron-phosphate-silicate chemical garden structures.
    Barge LM; Doloboff IJ; White LM; Stucky GD; Russell MJ; Kanik I
    Langmuir; 2012 Feb; 28(8):3714-21. PubMed ID: 22035594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White and green rust chimneys accumulate RNA in a ferruginous chemical garden.
    Helmbrecht V; Weingart M; Klein F; Braun D; Orsi WD
    Geobiology; 2023 Nov; 21(6):758-769. PubMed ID: 37615250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents.
    Altair T; Borges LGF; Galante D; Varela H
    Life (Basel); 2021 Jul; 11(8):. PubMed ID: 34440521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal systems in small ocean planets.
    Vance S; Harnmeijer J; Kimura J; Hussmann H; Demartin B; Brown JM
    Astrobiology; 2007 Dec; 7(6):987-1005. PubMed ID: 18163874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospecting for life.
    Russell MJ
    Interface Focus; 2019 Dec; 9(6):20190050. PubMed ID: 31641430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide and RNA contributions to iron-sulphur chemical gardens as life's first inorganic compartments, catalysts, capacitors and condensers.
    McGlynn SE; Kanik I; Russell MJ
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1969):3007-22. PubMed ID: 22615473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, fabrication, and test of a hydrothermal reactor for origin-of-life experiments.
    Mielke RE; Russell MJ; Wilson PR; McGlynn SE; Coleman M; Kidd R; Kanik I
    Astrobiology; 2010 Oct; 10(8):799-810. PubMed ID: 21087160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fuel cell model of abiogenesis: a new approach to origin-of-life simulations.
    Barge LM; Kee TP; Doloboff IJ; Hampton JM; Ismail M; Pourkashanian M; Zeytounian J; Baum MM; Moss JA; Lin CK; Kidd RD; Kanik I
    Astrobiology; 2014 Mar; 14(3):254-70. PubMed ID: 24621309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.
    Holm NG; Andersson E
    Astrobiology; 2005 Aug; 5(4):444-60. PubMed ID: 16078865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.