These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 26650915)
21. The Dallol Geothermal Area, Northern Afar (Ethiopia)-An Exceptional Planetary Field Analog on Earth. Cavalazzi B; Barbieri R; Gómez F; Capaccioni B; Olsson-Francis K; Pondrelli M; Rossi AP; Hickman-Lewis K; Agangi A; Gasparotto G; Glamoclija M; Ori GG; Rodriguez N; Hagos M Astrobiology; 2019 Apr; 19(4):553-578. PubMed ID: 30653331 [TBL] [Abstract][Full Text] [Related]
22. Interpreting Molecular and Isotopic Biosignatures in Methane-Derived Authigenic Carbonates in the Light of a Potential Carbon Cycle in the Icy Moons. Carrizo D; de Dios-Cubillas A; Sánchez-García L; López I; Prieto-Ballesteros O Astrobiology; 2022 May; 22(5):552-567. PubMed ID: 35325553 [TBL] [Abstract][Full Text] [Related]
23. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry. Kobayashi K; Geppert WD; Carrasco N; Holm NG; Mousis O; Palumbo ME; Waite JH; Watanabe N; Ziurys LM Astrobiology; 2017 Aug; 17(8):786-812. PubMed ID: 28727932 [TBL] [Abstract][Full Text] [Related]
25. Iron-sulfide-bearing chimneys as potential catalytic energy traps at life's emergence. Mielke RE; Robinson KJ; White LM; McGlynn SE; McEachern K; Bhartia R; Kanik I; Russell MJ Astrobiology; 2011 Dec; 11(10):933-50. PubMed ID: 22111762 [TBL] [Abstract][Full Text] [Related]
26. Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy. Demaret L; Hutchinson IB; Ingley R; Edwards HGM; Fagel N; Compere P; Javaux EJ; Eppe G; Malherbe C Astrobiology; 2022 Sep; 22(9):1081-1098. PubMed ID: 35704291 [TBL] [Abstract][Full Text] [Related]
27. The Effect of the Presence of Amino Acids on the Precipitation of Inorganic Chemical-Garden Membranes: Biomineralization at the Origin of Life. Borrego-Sánchez A; Gutiérrez-Ariza C; Sainz-Díaz CI; Cartwright JHE Langmuir; 2022 Aug; 38(34):10538-10547. PubMed ID: 35974697 [TBL] [Abstract][Full Text] [Related]
28. Energy Landscapes in Hydrothermal Chimneys Shape Distributions of Primary Producers. Dahle H; Le Moine Bauer S; Baumberger T; Stokke R; Pedersen RB; Thorseth IH; Steen IH Front Microbiol; 2018; 9():1570. PubMed ID: 30061874 [TBL] [Abstract][Full Text] [Related]
29. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Hou J; Sievert SM; Wang Y; Seewald JS; Natarajan VP; Wang F; Xiao X Microbiome; 2020 Jun; 8(1):102. PubMed ID: 32605604 [TBL] [Abstract][Full Text] [Related]
30. Simulating Serpentinization as It Could Apply to the Emergence of Life Using the JPL Hydrothermal Reactor. White LM; Shibuya T; Vance SD; Christensen LE; Bhartia R; Kidd R; Hoffmann A; Stucky GD; Kanik I; Russell MJ Astrobiology; 2020 Mar; 20(3):307-326. PubMed ID: 32125196 [TBL] [Abstract][Full Text] [Related]
31. Organics in chimneys and water samples from deep-sea hydrothermal systems: implications for sub-vent biosphere. Horiuchi T; Kobayashi K; Takano Y; Marumo K; Nakashima M; Yamagishi A; Ishibashi J; Urabe T Biol Sci Space; 2003 Oct; 17(3):190-1. PubMed ID: 14676368 [TBL] [Abstract][Full Text] [Related]
33. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. Wang Q; Steinbock O Langmuir; 2021 Feb; 37(7):2485-2493. PubMed ID: 33555186 [TBL] [Abstract][Full Text] [Related]
34. Complex Brines and Their Implications for Habitability. Renno NO; Fischer E; Martínez G; Hanley J Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440591 [TBL] [Abstract][Full Text] [Related]
35. A microfluidic labyrinth self-assembled by a chemical garden. Testón-Martínez S; Huertas-Roldán T; Knoll P; Barge LM; Sainz-Díaz CI; Cartwright JHE Phys Chem Chem Phys; 2023 Nov; 25(44):30469-30476. PubMed ID: 37921059 [TBL] [Abstract][Full Text] [Related]
36. Serpentinite and the search for life beyond Earth. Vance SD; Melwani Daswani M Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180421. PubMed ID: 31902342 [TBL] [Abstract][Full Text] [Related]
37. Hydrothermal Processing of Microorganisms: Mass Spectral Signals of Degraded Biosignatures for Life Detection on Icy Moons. Salter TL; Watson JS; Waite JH; Sephton MA ACS Earth Space Chem; 2022 Oct; 6(10):2508-2518. PubMed ID: 36303715 [TBL] [Abstract][Full Text] [Related]
38. Hydrothermal systems as environments for the emergence of life. Shock EL Ciba Found Symp; 1996; 202():40-52; discussion 52-60. PubMed ID: 9243009 [TBL] [Abstract][Full Text] [Related]
39. Seeding life on the moons of the outer planets via lithopanspermia. Worth RJ; Sigurdsson S; House CH Astrobiology; 2013 Dec; 13(12):1155-65. PubMed ID: 24341459 [TBL] [Abstract][Full Text] [Related]
40. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field. Eickmann B; Thorseth IH; Peters M; Strauss H; Bröcker M; Pedersen RB Geobiology; 2014 Jul; 12(4):308-21. PubMed ID: 24725254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]