These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 26650915)
41. Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto. Barge LM; Cardoso SS; Cartwright JH; Doloboff IJ; Flores E; Macías-Sánchez E; Sainz-Díaz CI; Sobrón P Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160466. PubMed ID: 27956875 [TBL] [Abstract][Full Text] [Related]
42. Oxidative Weathering and Microbial Diversity of an Inactive Seafloor Hydrothermal Sulfide Chimney. Li J; Cui J; Yang Q; Cui G; Wei B; Wu Z; Wang Y; Zhou H Front Microbiol; 2017; 8():1378. PubMed ID: 28785251 [TBL] [Abstract][Full Text] [Related]
43. Effect of water activity on rates of serpentinization of olivine. Lamadrid HM; Rimstidt JD; Schwarzenbach EM; Klein F; Ulrich S; Dolocan A; Bodnar RJ Nat Commun; 2017 Jul; 8():16107. PubMed ID: 28706268 [TBL] [Abstract][Full Text] [Related]
44. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage. McCliment EA; Voglesonger KM; O'Day PA; Dunn EE; Holloway JR; Cary SC Environ Microbiol; 2006 Jan; 8(1):114-25. PubMed ID: 16343327 [TBL] [Abstract][Full Text] [Related]
45. The Role of Meteorite Impacts in the Origin of Life. Osinski GR; Cockell CS; Pontefract A; Sapers HM Astrobiology; 2020 Sep; 20(9):1121-1149. PubMed ID: 32876492 [TBL] [Abstract][Full Text] [Related]
46. Physicochemical Requirements Inferred for Chemical Self-Organization Hardly Support an Emergence of Life in the Deep Oceans of Icy Moons. Pascal R Astrobiology; 2016 May; 16(5):328-34. PubMed ID: 27116590 [TBL] [Abstract][Full Text] [Related]
47. Color Catalogue of Life in Ice: Surface Biosignatures on Icy Worlds. Coelho LF; Madden J; Kaltenegger L; Zinder S; Philpot W; Esquível MG; Canário J; Costa R; Vincent WF; Martins Z Astrobiology; 2022 Mar; 22(3):313-321. PubMed ID: 34964651 [TBL] [Abstract][Full Text] [Related]
48. Dissimilar chemobrionic growth in copper silicate chemical gardens in the absence or presence of light. Patel VK; Busupalli B Chem Commun (Camb); 2023 Jan; 59(6):768-771. PubMed ID: 36546324 [TBL] [Abstract][Full Text] [Related]
49. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Schwander L; Brabender M; Mrnjavac N; Wimmer JLE; Preiner M; Martin WF Front Microbiol; 2023; 14():1257597. PubMed ID: 37854333 [TBL] [Abstract][Full Text] [Related]
50. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge. Lin TJ; Ver Eecke HC; Breves EA; Dyar MD; Jamieson JW; Hannington MD; Dahle H; Bishop JL; Lane MD; Butterfield DA; Kelley DS; Lilley MD; Baross JA; Holden JF Geochem Geophys Geosyst; 2016 Feb; 17(2):300-323. PubMed ID: 30123099 [TBL] [Abstract][Full Text] [Related]
51. Hydrothermal systems on Mars: an assessment of present evidence. Farmer JD Ciba Found Symp; 1996; 202():273-95; discussion 295-9. PubMed ID: 9243021 [TBL] [Abstract][Full Text] [Related]
52. Quantifying the Bioavailable Energy in an Ancient Hydrothermal Vent on Mars and a Modern Earth-Based Analog. Rucker HR; Ely TD; LaRowe DE; Giovannelli D; Price RE Astrobiology; 2023 Apr; 23(4):431-445. PubMed ID: 36862508 [TBL] [Abstract][Full Text] [Related]
53. Formation of Thiophene under Simulated Volcanic Hydrothermal Conditions on Earth-Implications for Early Life on Extraterrestrial Planets? Geisberger T; Sobotta J; Eisenreich W; Huber C Life (Basel); 2021 Feb; 11(2):. PubMed ID: 33669362 [TBL] [Abstract][Full Text] [Related]
54. Pattern selection by material aging: Modeling chemical gardens in two and three dimensions. Batista BC; Morris AZ; Steinbock O Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2305172120. PubMed ID: 37399415 [TBL] [Abstract][Full Text] [Related]
55. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Olins HC; Rogers DR; Frank KL; Vidoudez C; Girguis PR Geobiology; 2013 May; 11(3):279-93. PubMed ID: 23551687 [TBL] [Abstract][Full Text] [Related]
56. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry. Deamer D; Damer B Astrobiology; 2017 Sep; 17(9):834-839. PubMed ID: 28682665 [TBL] [Abstract][Full Text] [Related]
57. Trace Element Concentrations in Hydrothermal Silica Deposits as a Potential Biosignature. Gangidine A; Havig JR; Fike DA; Jones C; Hamilton TL; Czaja AD Astrobiology; 2020 Apr; 20(4):525-536. PubMed ID: 31859527 [TBL] [Abstract][Full Text] [Related]
58. Origin of Life's Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents. Rimmer PB; Shorttle O Life (Basel); 2019 Jan; 9(1):. PubMed ID: 30682803 [TBL] [Abstract][Full Text] [Related]
59. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents. Zhang X; Tian G; Gao J; Han M; Su R; Wang Y; Feng S Orig Life Evol Biosph; 2017 Dec; 47(4):413-425. PubMed ID: 27663450 [TBL] [Abstract][Full Text] [Related]