These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26651016)

  • 1. Reverse Microemulsion-mediated Synthesis of Monometallic and Bimetallic Early Transition Metal Carbide and Nitride Nanoparticles.
    Hunt ST; Román-Leshkov Y
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26651016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route.
    Wu Z; Yang Y; Gu D; Li Q; Feng D; Chen Z; Tu B; Webley PA; Zhao D
    Small; 2009 Dec; 5(23):2738-49. PubMed ID: 19743431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.
    Hunt ST; Milina M; Alba-Rubio AC; Hendon CH; Dumesic JA; Román-Leshkov Y
    Science; 2016 May; 352(6288):974-8. PubMed ID: 27199426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts.
    Garg A; Milina M; Ball M; Zanchet D; Hunt ST; Dumesic JA; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8828-8833. PubMed ID: 28544178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Facile Route for the Preparation of Monodisperse Iron nitride at Silica Core/shell Nanostructures.
    Kim H; Im PW; Piao Y
    Front Bioeng Biotechnol; 2021; 9():735727. PubMed ID: 34616720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic Nanoshells for Metal - Enhanced Fluorescence with Broad Band Fluorophores.
    Zhang J; Fu Y; Mahdavi F
    J Phys Chem C Nanomater Interfaces; 2012 Nov; 116(45):24224-24232. PubMed ID: 23230456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures.
    Pei Y; Maligal-Ganesh RV; Xiao C; Goh TW; Brashler K; Gustafson JA; Huang W
    Nanoscale; 2015 Oct; 7(40):16721-8. PubMed ID: 26399612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion.
    Park JN; Zhang P; Hu YS; McFarland EW
    Nanotechnology; 2010 Jun; 21(22):225708. PubMed ID: 20453272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition.
    Zheng W; Cotter TP; Kaghazchi P; Jacob T; Frank B; Schlichte K; Zhang W; Su DS; Schüth F; Schlögl R
    J Am Chem Soc; 2013 Mar; 135(9):3458-64. PubMed ID: 23350903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient silica coated CuNi bimetallic nanocatalyst from reverse microemulsion.
    Ge Y; Gao T; Wang C; Shah ZH; Lu R; Zhang S
    J Colloid Interface Sci; 2017 Apr; 491():123-132. PubMed ID: 28024189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of hollow silica nanospheres by reverse microemulsion.
    Lin CH; Chang JH; Yeh YQ; Wu SH; Liu YH; Mou CY
    Nanoscale; 2015 Jun; 7(21):9614-26. PubMed ID: 25952307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation.
    Abou Hamdan M; Nassereddine A; Checa R; Jahjah M; Pinel C; Piccolo L; Perret N
    Front Chem; 2020; 8():452. PubMed ID: 32582635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.
    Page AJ; Yamane H; Ohta Y; Irle S; Morokuma K
    J Am Chem Soc; 2010 Nov; 132(44):15699-707. PubMed ID: 20961094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of early-transition-metal carbide and nitride nanoparticles through the urea route and their use as alkylation catalysts.
    Yao W; Makowski P; Giordano C; Goettmann F
    Chemistry; 2009 Nov; 15(44):11999-2004. PubMed ID: 19780111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis.
    Hunt ST; Nimmanwudipong T; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile hollow fluorescent metal-silica nanohybrids through a modified microemulsion synthesis route.
    Clemente A; Moreno N; Lobera MP; Balas F; Santamaria J
    J Colloid Interface Sci; 2018 Mar; 513():497-504. PubMed ID: 29179090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive study to design advanced metal-carbide@garaphene and metal-carbide@iron oxide nanoparticles with tunable structure by the laser ablation in liquid.
    Davodi F; Mühlhausen E; Settipani D; Rautama EL; Honkanen AP; Huotari S; Marzun G; Taskinen P; Kallio T
    J Colloid Interface Sci; 2019 Nov; 556():180-192. PubMed ID: 31445447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.