BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26651388)

  • 1. Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.
    Barman A; Smitherman C; Souffrant M; Gadda G; Hamelberg D
    J Chem Inf Model; 2016 Jan; 56(1):139-47. PubMed ID: 26651388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-mediated dynamic hydrogen-bonding network in the active site of Pin1.
    Barman A; Hamelberg D
    Biochemistry; 2014 Jun; 53(23):3839-50. PubMed ID: 24840168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation-directed catalysis and coupled enzyme-substrate dynamics in Pin1 phosphorylation-dependent cis-trans isomerase.
    Velazquez HA; Hamelberg D
    J Phys Chem B; 2013 Oct; 117(39):11509-17. PubMed ID: 23980573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dual histidine motif in the active site of Pin1 has a structural rather than catalytic role.
    Bailey ML; Shilton BH; Brandl CJ; Litchfield DW
    Biochemistry; 2008 Nov; 47(44):11481-9. PubMed ID: 18844375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of Ser-154, Cys-113, and the phosphorylated threonine residue on the catalytic reaction mechanism of Pin1.
    Vöhringer-Martinez E; Verstraelen T; Ayers PW
    J Phys Chem B; 2014 Aug; 118(33):9871-80. PubMed ID: 25059768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insights into Pin1 peptidyl-prolyl cis-trans isomerization from umbrella sampling simulations.
    Di Martino GP; Masetti M; Cavalli A; Recanatini M
    Proteins; 2014 Nov; 82(11):2943-56. PubMed ID: 25066180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational selection in the recognition of phosphorylated substrates by the catalytic domain of human Pin1.
    Velazquez HA; Hamelberg D
    Biochemistry; 2011 Nov; 50(44):9605-15. PubMed ID: 21967280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction and structural modification of topoisomerase IIalpha by peptidyl prolyl isomerase, pin1: an in silico study.
    Mathur R; Suman S; Beaume N; Ali M; Bhatt AN; Chopra M; Saluja D; Mishra AK; Chandna S; Kapoor PN; Dwarakanath BS
    Protein Pept Lett; 2010 Feb; 17(2):151-63. PubMed ID: 20214639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1.
    Namanja AT; Peng T; Zintsmaster JS; Elson AC; Shakour MG; Peng JW
    Structure; 2007 Mar; 15(3):313-27. PubMed ID: 17355867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C113D mutation in human Pin1 causes allosteric structural changes in the phosphate binding pocket of the PPIase domain through the tug of war in the dual-histidine motif.
    Xu N; Tochio N; Wang J; Tamari Y; Uewaki J; Utsunomiya-Tate N; Igarashi K; Shiraki T; Kobayashi N; Tate S
    Biochemistry; 2014 Sep; 53(34):5568-78. PubMed ID: 25100325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1.
    Innes BT; Sowole MA; Gyenis L; Dubinsky M; Konermann L; Litchfield DW; Brandl CJ; Shilton BH
    Biochim Biophys Acta; 2015 May; 1852(5):905-12. PubMed ID: 25595659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition.
    Schutkowski M; Bernhardt A; Zhou XZ; Shen M; Reimer U; Rahfeld JU; Lu KP; Fischer G
    Biochemistry; 1998 Apr; 37(16):5566-75. PubMed ID: 9548941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does Pin1 catalyze the cis-trans prolyl peptide bond isomerization? A QM/MM and mean reaction force study.
    Vöhringer-Martinez E; Duarte F; Toro-Labbé A
    J Phys Chem B; 2012 Nov; 116(43):12972-9. PubMed ID: 23030417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Pin1 peptidyl-prolyl cis/trans isomerase activity by its WW binding module on a multi-phosphorylated peptide of Tau protein.
    Smet C; Wieruszeski JM; Buée L; Landrieu I; Lippens G
    FEBS Lett; 2005 Aug; 579(19):4159-64. PubMed ID: 16024016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation.
    Schelhorn C; Martín-Malpartida P; Suñol D; Macias MJ
    Sci Rep; 2015 Oct; 5():14990. PubMed ID: 26456073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytosolic Aryl sulfotransferase 4A1 interacts with the peptidyl prolyl cis-trans isomerase Pin1.
    Mitchell DJ; Minchin RF
    Mol Pharmacol; 2009 Aug; 76(2):388-95. PubMed ID: 19439498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau.
    Smet C; Sambo AV; Wieruszeski JM; Leroy A; Landrieu I; Buée L; Lippens G
    Biochemistry; 2004 Feb; 43(7):2032-40. PubMed ID: 14967043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum(III) interferes with the structure and the activity of the peptidyl-prolyl cis-trans isomerase (Pin1): a new mechanism contributing to the pathogenesis of Alzheimer's disease and cancers?
    Wang JZ; Liu J; Lin T; Han YG; Luo Y; Xi L; Du LF
    J Inorg Biochem; 2013 Sep; 126():111-7. PubMed ID: 23806774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric Breakage of the Hydrogen Bond within the Dual-Histidine Motif in the Active Site of Human Pin1 PPIase.
    Wang J; Tochio N; Kawasaki R; Tamari Y; Xu N; Uewaki J; Utsunomiya-Tate N; Tate S
    Biochemistry; 2015 Aug; 54(33):5242-53. PubMed ID: 26226559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallographic proof for an extended hydrogen-bonding network in small prolyl isomerases.
    Mueller JW; Link NM; Matena A; Hoppstock L; Rüppel A; Bayer P; Blankenfeldt W
    J Am Chem Soc; 2011 Dec; 133(50):20096-9. PubMed ID: 22081960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.