BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26651395)

  • 21. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports.
    Henry TB; Petersen EJ; Compton RN
    Curr Opin Biotechnol; 2011 Aug; 22(4):533-7. PubMed ID: 21719272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of dilution on the properties of nC₆₀.
    Chang X; Vikesland PJ
    Environ Pollut; 2013 Oct; 181():51-9. PubMed ID: 23811179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions.
    Tao X; He Y; Zhang B; Chen Y; Hughes JB
    J Environ Sci (China); 2011; 23(2):322-9. PubMed ID: 21517008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photochemical reactivity of aqueous fullerene clusters: C
    Hou WC; Huang SH
    J Hazard Mater; 2017 Jan; 322(Pt A):310-317. PubMed ID: 27344404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dispersion, stability, and resuspension of C
    Ding G; Li X; Zhang J; Zhang N; Li R; Wang Y; Yang Z; Peijnenburg WJGM
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25538-25549. PubMed ID: 31267391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives.
    Bouchard D; Ma X; Isaacson C
    Environ Sci Technol; 2009 Sep; 43(17):6597-603. PubMed ID: 19764223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of carboxylic acids on nC60 aggregate formation.
    Chang X; Vikesland PJ
    Environ Pollut; 2009 Apr; 157(4):1072-80. PubMed ID: 19054600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination.
    Erdim E; Badireddy AR; Wiesner MR
    J Hazard Mater; 2015; 283():80-8. PubMed ID: 25262481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations.
    Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C
    Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC
    Ghosh S; Pradhan NR; Mashayekhi H; Zhang Q; Pan B; Xing B
    Environ Pollut; 2016 Dec; 219():1049-1059. PubMed ID: 27638456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60).
    Wang L; Hou L; Wang X; Chen W
    Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aggregation behavior of aqu/nC
    Li X; Ding G; Song G; Zhuang Y; Wang C; Li R; Liu Q
    Ecotoxicol Environ Saf; 2020 Apr; 193():110332. PubMed ID: 32088550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
    Wang Y; Li Y; Pennell KD
    Environ Toxicol Chem; 2008 Sep; 27(9):1860-7. PubMed ID: 19086205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Naproxen removal from water by chlorination and biofilm processes.
    Boyd GR; Zhang S; Grimm DA
    Water Res; 2005 Feb; 39(4):668-76. PubMed ID: 15707640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study.
    Astefanei A; Núñez O; Galceran MT; Kok WT; Schoenmakers PJ
    Anal Bioanal Chem; 2015 Oct; 407(26):8035-45. PubMed ID: 26314484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of aqueous suspensions of fullerenes.
    Ma X; Bouchard D
    Environ Sci Technol; 2009 Jan; 43(2):330-6. PubMed ID: 19238960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.
    Espinasse B; Hotze EM; Wiesner MR
    Environ Sci Technol; 2007 Nov; 41(21):7396-402. PubMed ID: 18044517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.
    Floris R; Nijmeijer K; Cornelissen ER
    Water Res; 2016 Mar; 91():115-25. PubMed ID: 26773485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.