BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26651607)

  • 1. Notch-Dependent Pituitary SOX2(+) Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland.
    Zhu X; Tollkuhn J; Taylor H; Rosenfeld MG
    Stem Cell Reports; 2015 Dec; 5(6):1196-1209. PubMed ID: 26651607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential.
    Andoniadou CL; Matsushima D; Mousavy Gharavy SN; Signore M; Mackintosh AI; Schaeffer M; Gaston-Massuet C; Mollard P; Jacques TS; Le Tissier P; Dattani MT; Pevny LH; Martinez-Barbera JP
    Cell Stem Cell; 2013 Oct; 13(4):433-45. PubMed ID: 24094324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland.
    Gremeaux L; Fu Q; Chen J; Vankelecom H
    Stem Cells Dev; 2012 Mar; 21(5):801-13. PubMed ID: 21970375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression studies of neuronatin in prenatal and postnatal rat pituitary.
    Kanno N; Higuchi M; Yoshida S; Yako H; Chen M; Ueharu H; Nishimura N; Kato T; Kato Y
    Cell Tissue Res; 2016 May; 364(2):273-88. PubMed ID: 26613603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SOX2 is sequentially required for progenitor proliferation and lineage specification in the developing pituitary.
    Goldsmith S; Lovell-Badge R; Rizzoti K
    Development; 2016 Jul; 143(13):2376-88. PubMed ID: 27226320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Major depletion of SOX2
    Roose H; Cox B; Boretto M; Gysemans C; Vennekens A; Vankelecom H
    Sci Rep; 2017 Dec; 7(1):16940. PubMed ID: 29208952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cells in the pituitary gland: A burgeoning field.
    Vankelecom H; Gremeaux L
    Gen Comp Endocrinol; 2010 May; 166(3):478-88. PubMed ID: 19917287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional studies of Prop1-expressing cells in the rat pituitary just before birth.
    Yako H; Kato T; Yoshida S; Higuchi M; Chen M; Kanno N; Ueharu H; Kato Y
    Cell Tissue Res; 2013 Dec; 354(3):837-47. PubMed ID: 24026438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pituitary progenitor cells tracked down by side population dissection.
    Chen J; Gremeaux L; Fu Q; Liekens D; Van Laere S; Vankelecom H
    Stem Cells; 2009 May; 27(5):1182-95. PubMed ID: 19418455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pituitary stem cell regulation: who is pulling the strings?
    Cox B; Roose H; Vennekens A; Vankelecom H
    J Endocrinol; 2017 Sep; 234(3):R135-R158. PubMed ID: 28615294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration.
    Fu Q; Gremeaux L; Luque RM; Liekens D; Chen J; Buch T; Waisman A; Kineman R; Vankelecom H
    Endocrinology; 2012 Jul; 153(7):3224-35. PubMed ID: 22518061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hes1 is required for pituitary growth and melanotrope specification.
    Raetzman LT; Cai JX; Camper SA
    Dev Biol; 2007 Apr; 304(2):455-66. PubMed ID: 17367776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PROP1 coexists with SOX2 and induces PIT1-commitment cells.
    Yoshida S; Kato T; Susa T; Cai LY; Nakayama M; Kato Y
    Biochem Biophys Res Commun; 2009 Jul; 385(1):11-5. PubMed ID: 19442651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary.
    Garcia-Lavandeira M; Quereda V; Flores I; Saez C; Diaz-Rodriguez E; Japon MA; Ryan AK; Blasco MA; Dieguez C; Malumbres M; Alvarez CV
    PLoS One; 2009; 4(3):e4815. PubMed ID: 19283075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma.
    Haston S; Pozzi S; Carreno G; Manshaei S; Panousopoulos L; Gonzalez-Meljem JM; Apps JR; Virasami A; Thavaraj S; Gutteridge A; Forshew T; Marais R; Brandner S; Jacques TS; Andoniadou CL; Martinez-Barbera JP
    Development; 2017 Jun; 144(12):2141-2152. PubMed ID: 28506993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organoids from pituitary as a novel research model toward pituitary stem cell exploration.
    Cox B; Laporte E; Vennekens A; Kobayashi H; Nys C; Van Zundert I; Uji-I H; Vercauteren Drubbel A; Beck B; Roose H; Boretto M; Vankelecom H
    J Endocrinol; 2019 Feb; 240(2):287-308. PubMed ID: 30475227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.
    Aujla PK; Bogdanovic V; Naratadam GT; Raetzman LT
    Dev Dyn; 2015 Aug; 244(8):921-34. PubMed ID: 25907274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of Notch signaling molecules and their effect on cellular proliferation in adult rat pituitary.
    Tando Y; Fujiwara K; Yashiro T; Kikuchi M
    Cell Tissue Res; 2013 Mar; 351(3):511-9. PubMed ID: 23232913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the role and origin of pituitary S100β-positive cells.
    Kato Y; Yoshida S; Kato T
    Cell Tissue Res; 2021 Nov; 386(2):227-237. PubMed ID: 34550453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of pituitary stem cells by epithelial to mesenchymal transition events and signaling pathways.
    Cheung LY; Davis SW; Brinkmeier ML; Camper SA; Pérez-Millán MI
    Mol Cell Endocrinol; 2017 Apr; 445():14-26. PubMed ID: 27650955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.