BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26651631)

  • 1. Amoeboid motion in confined geometry.
    Wu H; Thiébaud M; Hu WF; Farutin A; Rafaï S; Lai MC; Peyla P; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):050701. PubMed ID: 26651631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amoeboid swimming in a channel.
    Wu H; Farutin A; Hu WF; Thiébaud M; Rafaï S; Peyla P; Lai MC; Misbah C
    Soft Matter; 2016 Sep; 12(36):7470-84. PubMed ID: 27546154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amoeboid swimming in a compliant channel.
    Dalal S; Farutin A; Misbah C
    Soft Matter; 2020 Feb; 16(6):1599-1613. PubMed ID: 31956873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forces and shapes as determinants of micro-swimming: effect on synchronisation and the utilisation of drag.
    Pande J; Smith AS
    Soft Matter; 2015 Mar; 11(12):2364-71. PubMed ID: 25675985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.
    Hochstein S; Blickhan R
    Hum Mov Sci; 2014 Dec; 38():305-18. PubMed ID: 25457427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State diagram of a three-sphere microswimmer in a channel.
    Daddi-Moussa-Ider A; Lisicki M; Mathijssen AJTM; Hoell C; Goh S; Bławzdziewicz J; Menzel AM; Löwen H
    J Phys Condens Matter; 2018 Jun; 30(25):254004. PubMed ID: 29757157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Investigation of Swimmer's Gliding Stage with 6-DOF Movement.
    Li T; Cai W; Zhan J
    PLoS One; 2017; 12(1):e0170894. PubMed ID: 28125724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flagellar swimmers oscillate between pusher- and puller-type swimming.
    Klindt GS; Friedrich BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063019. PubMed ID: 26764816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amoeboid swimming: a generic self-propulsion of cells in fluids by means of membrane deformations.
    Farutin A; Rafaï S; Dysthe DK; Duperray A; Peyla P; Misbah C
    Phys Rev Lett; 2013 Nov; 111(22):228102. PubMed ID: 24329472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetry and stability of shape kinematics in microswimmers' motion.
    Or Y
    Phys Rev Lett; 2012 Jun; 108(25):258101. PubMed ID: 23004662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Microswimmers Speed Up in Confining Channels.
    Liu C; Zhou C; Wang W; Zhang HP
    Phys Rev Lett; 2016 Nov; 117(19):198001. PubMed ID: 27858454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the effect of swimmer's head position on swimming performance using computational fluid dynamics.
    Zaïdi H; Taïar R; Fohanno S; Polidori G
    J Biomech; 2008; 41(6):1350-8. PubMed ID: 18374343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced-order model for inertial locomotion of a slender swimmer.
    Mahalinkam R; Gong F; Khair AS
    Phys Rev E; 2018 Apr; 97(4-1):043102. PubMed ID: 29758634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confinement Enhances the Diversity of Microbial Flow Fields.
    Jeanneret R; Pushkin DO; Polin M
    Phys Rev Lett; 2019 Dec; 123(24):248102. PubMed ID: 31922880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping of swimmers in a vortex lattice.
    Berman SA; Mitchell KA
    Chaos; 2020 Jun; 30(6):063121. PubMed ID: 32611071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced locomotion, effective diffusion and trapping of undulatory micro-swimmers in heterogeneous environments.
    Kamal A; Keaveny EE
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30487240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Cytoskeleton Elasticity on Amoeboid Swimming.
    Ranganathan M; Farutin A; Misbah C
    Biophys J; 2018 Oct; 115(7):1316-1329. PubMed ID: 30177444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vortex structure and fluid force changed by altering whole-body kinematic parameters during underwater undulatory swimming.
    Tanaka T; Hashizume S; Kurihara T; Isaka T
    Sports Biomech; 2023 Jul; ():1-14. PubMed ID: 37427747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.