These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 26651641)
1. Information geometry and the renormalization group. Maity R; Mahapatra S; Sarkar T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052101. PubMed ID: 26651641 [TBL] [Abstract][Full Text] [Related]
2. Geometric critical exponents in classical and quantum phase transitions. Kumar P; Sarkar T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042145. PubMed ID: 25375476 [TBL] [Abstract][Full Text] [Related]
3. Geodesics in information geometry: classical and quantum phase transitions. Kumar P; Mahapatra S; Phukon P; Sarkar T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051117. PubMed ID: 23214748 [TBL] [Abstract][Full Text] [Related]
4. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy. Antonov NV; Kostenko MM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063016. PubMed ID: 25615196 [TBL] [Abstract][Full Text] [Related]
5. Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving. Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047102. PubMed ID: 16711952 [TBL] [Abstract][Full Text] [Related]
6. Scaling theory of topological phase transitions. Chen W J Phys Condens Matter; 2016 Feb; 28(5):055601. PubMed ID: 26790004 [TBL] [Abstract][Full Text] [Related]
7. Anomalous scaling of a passive scalar advected by a turbulent velocity field with finite correlation time and uniaxial small-scale anisotropy. Jurcisinová E; Jurcisin M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016306. PubMed ID: 18351933 [TBL] [Abstract][Full Text] [Related]
8. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance. Wu TP; Wang XQ; Guo GY; Anders F; Chung CH J Phys Condens Matter; 2016 May; 28(17):175003. PubMed ID: 27045815 [TBL] [Abstract][Full Text] [Related]
10. Information geometric methods for complexity. Felice D; Cafaro C; Mancini S Chaos; 2018 Mar; 28(3):032101. PubMed ID: 29604632 [TBL] [Abstract][Full Text] [Related]
11. A triangulation-invariant method for anisotropic geodesic map computation on surface meshes. Yoo SW; Seong JK; Sung MH; Shin SY; Cohen E IEEE Trans Vis Comput Graph; 2012 Oct; 18(10):1664-77. PubMed ID: 22291150 [TBL] [Abstract][Full Text] [Related]
12. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models. Gonzalez D; Gutiérrez-Ruiz D; Vergara JD Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288 [TBL] [Abstract][Full Text] [Related]
13. Microscopic approach to critical phenomena at interfaces: an application to complete wetting in the Ising model. Orlandi A; Parola A; Reatto L Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051611. PubMed ID: 15600632 [TBL] [Abstract][Full Text] [Related]
14. Quantum entanglement and criticality in a one-dimensional deconfined quantum critical point. Yang S; Xu JB Phys Rev E; 2021 Dec; 104(6-1):064121. PubMed ID: 35030944 [TBL] [Abstract][Full Text] [Related]
15. Universal amplitude ratios of the renormalization group: two-dimensional tricritical Ising model. Fioravanti D; Mussardo G; Simon P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016103. PubMed ID: 11304310 [TBL] [Abstract][Full Text] [Related]
16. Full nonuniversality of the symmetric 16-vertex model on the square lattice. Pospíšilová E; Krčmár R; Gendiar A; Šamaj L Phys Rev E; 2020 Jul; 102(1-1):012125. PubMed ID: 32795072 [TBL] [Abstract][Full Text] [Related]
17. Influence of helicity on anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: two-loop approximation. Chkhetiani OG; Hnatich M; Jurcisinová E; Jurcisin M; Mazzino A; Repasan M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036310. PubMed ID: 17025746 [TBL] [Abstract][Full Text] [Related]
18. Information geometry and quantum phase transitions in the Dicke model. Dey A; Mahapatra S; Roy P; Sarkar T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031137. PubMed ID: 23030896 [TBL] [Abstract][Full Text] [Related]
19. Information geometry of the spherical model. Janke W; Johnston DA; Kenna R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046106. PubMed ID: 12786435 [TBL] [Abstract][Full Text] [Related]
20. Stability of de Sitter Spacetime against Infrared Quantum Scalar Field Fluctuations. Moreau G; Serreau J Phys Rev Lett; 2019 Jan; 122(1):011302. PubMed ID: 31012677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]