These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26651646)

  • 1. Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space.
    Castaños O; Calixto M; Pérez-Bernal F; Romera E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052106. PubMed ID: 26651646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization measures of parity adapted U(D)-spin coherent states applied to the phase space analysis of the D-level Lipkin-Meshkov-Glick model.
    Mayorgas A; Guerrero J; Calixto M
    Phys Rev E; 2023 Aug; 108(2-1):024107. PubMed ID: 37723708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models.
    Gonzalez D; Gutiérrez-Ruiz D; Vergara JD
    Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Static aspects.
    Gamito J; Khalouf-Rivera J; Arias JM; Pérez-Fernández P; Pérez-Bernal F
    Phys Rev E; 2022 Oct; 106(4-1):044125. PubMed ID: 36397542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excited-state quantum phase transitions in Dicke superradiance models.
    Brandes T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032133. PubMed ID: 24125239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited-state quantum phase transitions and the entropy of the work distribution in the anharmonic Lipkin-Meshkov-Glick model.
    Zhang H; Qian Y; Niu ZX; Wang Q
    Phys Rev E; 2024 Jun; 109(6-1):064110. PubMed ID: 39021010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the Lipkin-Meshkov-Glick model excited-state quantum phase transition using dynamical and statistical properties of the diagonal entropy.
    Wang Q; Pérez-Bernal F
    Phys Rev E; 2021 Mar; 103(3-1):032109. PubMed ID: 33862777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-size scaling exponents of the Lipkin-Meshkov-Glick model.
    Dusuel S; Vidal J
    Phys Rev Lett; 2004 Dec; 93(23):237204. PubMed ID: 15601198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avoided crossings and dynamical tunneling close to excited-state quantum phase transitions.
    Nader DJ; González-Rodríguez CA; Lerma-Hernández S
    Phys Rev E; 2021 Dec; 104(6-1):064116. PubMed ID: 35030927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures.
    Bao J; Liu YH; Guo B
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34517354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ac-Driven quantum phase transition in the Lipkin-Meshkov-Glick model.
    Engelhardt G; Bastidas VM; Emary C; Brandes T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052110. PubMed ID: 23767490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility.
    Kwok HM; Ning WQ; Gu SJ; Lin HQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):032103. PubMed ID: 18851088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum phase transitions in networks of Lipkin-Meshkov-Glick models.
    Sorokin AV; Bastidas VM; Brandes T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042141. PubMed ID: 25375472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects.
    Khalouf-Rivera J; Gamito J; Pérez-Bernal F; Arias JM; Pérez-Fernández P
    Phys Rev E; 2023 Jun; 107(6-1):064134. PubMed ID: 37464676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model.
    Orús R; Dusuel S; Vidal J
    Phys Rev Lett; 2008 Jul; 101(2):025701. PubMed ID: 18764198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model.
    Kopylov W; Schaller G; Brandes T
    Phys Rev E; 2017 Jul; 96(1-1):012153. PubMed ID: 29347272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED.
    Morrison S; Parkins AS
    Phys Rev Lett; 2008 Feb; 100(4):040403. PubMed ID: 18352244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamical limit of the Lipkin-Meshkov-Glick model.
    Ribeiro P; Vidal J; Mosseri R
    Phys Rev Lett; 2007 Aug; 99(5):050402. PubMed ID: 17930734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Markovianity of a Central Spin Interacting with a Lipkin-Meshkov-Glick Bath via a Conditional Past-Future Correlation.
    Han L; Zou J; Li H; Shao B
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistics of phase space localization measures and quantum chaos in the kicked top model.
    Wang Q; Robnik M
    Phys Rev E; 2023 May; 107(5-1):054213. PubMed ID: 37328969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.