These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26651665)

  • 1. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.
    Guo J; Wang J; Wang Y; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-dissipation heat devices: unified trade-off optimization and bounds.
    de Tomas C; Roco JM; Hernández AC; Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012105. PubMed ID: 23410281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation.
    Gonzalez-Ayala J; Calvo Hernández A; Roco JM
    Phys Rev E; 2017 Feb; 95(2-1):022131. PubMed ID: 28297927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency at maximum power of low-dissipation Carnot engines.
    Esposito M; Kawai R; Lindenberg K; Van den Broeck C
    Phys Rev Lett; 2010 Oct; 105(15):150603. PubMed ID: 21230882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal Trade-Off Relation between Power and Efficiency for Heat Engines.
    Shiraishi N; Saito K; Tasaki H
    Phys Rev Lett; 2016 Nov; 117(19):190601. PubMed ID: 27858428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Cycles for Low-Dissipation Heat Engines.
    Abiuso P; Perarnau-Llobet M
    Phys Rev Lett; 2020 Mar; 124(11):110606. PubMed ID: 32242675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified trade-off optimization for general heat devices with nonisothermal processes.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042127. PubMed ID: 25974458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines.
    Pietzonka P; Seifert U
    Phys Rev Lett; 2018 May; 120(19):190602. PubMed ID: 29799237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency at maximum power of thermochemical engines with near-independent particles.
    Luo X; Liu N; Qiu T
    Phys Rev E; 2016 Mar; 93(3):032125. PubMed ID: 27078310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity and isothermality, the optimal relation between power and efficiency.
    Zhao XH; Gong ZN; Tu ZC
    Phys Rev E; 2022 Dec; 106(6-1):064117. PubMed ID: 36671114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.